首页 | 本学科首页   官方微博 | 高级检索  
     

陆表水体遥感监测研究进展
引用本文:周岩,董金玮. 陆表水体遥感监测研究进展[J]. 地球信息科学学报, 2019, 21(11): 1768-1778. DOI: 10.12082/dqxxkx.2019.190518
作者姓名:周岩  董金玮
作者单位:1. 中国科学院地理科学与资源研究所 中国科学院陆地表层格局与模拟重点实验室,北京 1001012. 中国地质大学(北京)地球科学与资源学院,北京 100083
基金项目:中国科学院战略性先导科技专项(No.XDA19040301);中国科学院前沿科学重点研究项目(No.QYZDB-SSW-DQC005)
摘    要:江河湖泊等陆表水体在工农业生产、气候调节、生态系统维持等方面扮演着至关重要的角色。在气候变化与人类活动的作用下,陆表水体的空间分布始终在发生着变化,因而对其进行快速精准的时空变化监测对水资源管理与保护、未来气候变化预测等有着重要的意义。遥感技术为大范围水体动态监测提供了全新的技术手段,特别是在当前地球大数据背景下,水体提取算法不断改进,遥感数据源急剧增加,但缺乏对算法和数据演化过程的系统整理。鉴于此,本文对现有水体提取算法与遥感数据进行了综合梳理,归纳了单波段阈值法、多波段谱间关系法、水体指数与阈值法、支持向量机、随机森林、深度学习等常用算法的演变,以及遥感数据源由低(MODIS等)到中(Landsat等)和高(高分1/2号等)空间分辨率的发展过程,并在此基础上讨论了各算法与数据源在水体变化研究中的差异。此外,本文论述了数据处理平台由本地计算到高性能云计算平台(如谷歌地球引擎)的发展,云计算促进地表水变化研究由基于时间片段到基于时间序列连续过程分析的转变,以及云计算在大尺度范围的应用。最后,本文还对多源遥感数据融合与云计算平台的结合在地表水体连续变化监测中的应用进行了展望,并对不同类型水体提取的不确定性进行了讨论。

关 键 词:水体提取  遥感监测  遥感数据  算法  云计算平台  多源数据融合  
收稿时间:2019-09-12

Review on Monitoring Open Surface Water Body Using Remote Sensing
ZHOU Yan,DONG Jinwei. Review on Monitoring Open Surface Water Body Using Remote Sensing[J]. Geo-information Science, 2019, 21(11): 1768-1778. DOI: 10.12082/dqxxkx.2019.190518
Authors:ZHOU Yan  DONG Jinwei
Affiliation:1. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China2. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
Abstract:Open surface water bodies play important roles in industrial and agricultural production, climate regulation, and ecosystem maintenance. The spatial distributions of surface water bodies are always changing due to climate change and anthropogenic activities. Therefore, rapid and accurate monitoring of the spatiotemporal dynamics of surface water bodies is of great significance for water resources management and protection, as well as prediction of climate change. Remote sensing technology with the advantages of broader perspective, stronger timely effectiveness, larger information, and the ability of not affected by geographical environment provides a new way to monitor the dynamics of open surface water bodies over large extents, especially in remote and inaccessible mountain regions. The approach of the era of big earth data leads to the continuous improvements of water body mapping algorithms and increasing amounts of remote sensing data. However, there still lacks systematic review and evaluation about the evolution of relevant algorithms and data sources. In this context, based on the relevant literature ranging from the 1980s to 2018, this paper reviewed and assessed the existing algorithms and remote sensing data sources used in open surface water body mapping, and concluded the evolution processes of the common algorithms, such as single-band threshold approach, multi-band spectral relationship approach, spectral- and index-based approach, Support Vector Machine (SVM), Random Forest (RF), and Deep Learning (DL). Besides, we summarized the evolution of remote sensing data from coarse spatial resolutions (e.g. MODIS) to medium (e.g. Landsat) and high (e.g. GF-1/2) spatial resolutions. Furthermore, the different performances between these algorithms and data used in the studies of water body changes were analyzed. Also, we demonstrated the development of computing platforms from local computer to high performance cloud computing platforms such as Google Earth Engine (GEE) and Amazon Web Service (AWS), and highlighted typical cases that conduct retrospective and continuous monitoring of land cover changes over the global or regional scales. Then, we discussed the progress of studies focusing on the monitoring of open surface water body changes, from epoch-based analyses to interannual change analyses. Finally, we discussed the significance of the combined use of multi-source remote sensing data fusion and cloud computing platforms in the continuous monitoring of surface water body changes, and the uncertainties in detecting the different types of surface water bodies.
Keywords:open surface water body mapping  monitoring  remote sensing data  algorithm  cloud-computing platform  multi-source data fusion  
本文献已被 CNKI 等数据库收录!
点击此处可从《地球信息科学学报》浏览原始摘要信息
点击此处可从《地球信息科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号