包气带反硝化强度空间分布规律的整合分析
包气带反硝化强度空间分布规律的整合分析
-
摘要:
依据1970~2017年间发表的3955篇包气带反硝化强度相关论文,筛选出197组反硝化强度数据,利用整合分析,重点研究了包气带反硝化强度在典型生态类型(水平)和不同采样深度(垂向)的空间分布规律,识别了包气带反硝化强度的主控因素并研究其函数关系。结果表明:水平空间上,包气带表层0~0.5 m反硝化强度的分布特征显著,由大到小排序为:森林(8.03±0.21 mg/(kg·d))、农田(3.54±0.08 mg/(kg·d))、草地(3.38±0.12 mg/(kg·d))、湿地(2.32±0.23 mg/(kg·d))、沙漠(2.15±0.56 mg/(kg·d))。垂向空间上(6 m内),各生态类型反硝化强度随深度的增加均呈“S”型变化规律。不同生态类型和不同采样深度下包气带反硝化强度的主控因素存在一定差异,主要为黏粒、有机质、全氮、硝态氮、有效磷,并给出了包气带反硝化强度与主控因素的回归方程。
Abstract:依据1970~2017年间发表的3955篇包气带反硝化强度相关论文,筛选出197组反硝化强度数据,利用整合分析,重点研究了包气带反硝化强度在典型生态类型(水平)和不同采样深度(垂向)的空间分布规律,识别了包气带反硝化强度的主控因素并研究其函数关系。结果表明:水平空间上,包气带表层0~0.5 m反硝化强度的分布特征显著,由大到小排序为:森林(8.03±0.21 mg/(kg·d))、农田(3.54±0.08 mg/(kg·d))、草地(3.38±0.12 mg/(kg·d))、湿地(2.32±0.23 mg/(kg·d))、沙漠(2.15±0.56 mg/(kg·d))。垂向空间上(6 m内),各生态类型反硝化强度随深度的增加均呈“S”型变化规律。不同生态类型和不同采样深度下包气带反硝化强度的主控因素存在一定差异,主要为黏粒、有机质、全氮、硝态氮、有效磷,并给出了包气带反硝化强度与主控因素的回归方程。
-
Keywords:
- vadose zone /
- denitrification intensity /
- ecological type /
- sampling depth /
- meta-analysis
-
-
[1] [1]张云,张胜,刘长礼,等. 包气带土层对氮素污染地下水的防护能力综述与展望[J].农业环境科学学报, 2006,25(增刊1):339-346. [ZHANG Y, ZHANG S, LIU C L, et al. Prospect of capability of aeration zone in soil in prevention nitrogen from pollution of groundwater[J]. Journal of Agro-Environment Science, 2006, 25(Sup1):339-346. (in Chinese)]
[2] [2]魏亮,郭华明,谢振华,等. 北京平原包气带典型沉积物对NH+4-N吸附特性研究[J]. 水文地质工程地质, 2012,39(1):81-88. [WEI L, GUO H M, XIE Z H, et al. Adsorption characteristics of typical sediments from unsaturated zone of Beijing Plain,China[J]. Hydrogeology & Engineering Geology, 2012, 39(1):81-88. (in Chinese)]
[3] [3]高业新,张冰,崔浩浩. 包气带水入渗过程中水化学组分运移规律研究[J].水文地质工程地质, 2014,41(2):1-6. [GAO Y X, ZHANG B, CUI H H. A study of the migration of chemical compositions in vadose water infiltration[J]. Hydrogeology & Engineering Geology, 2014, 41(2):1-6. (in Chinese)]
[4] [4]Qin S, Hu C, Clough T J, et al. Irrigation of DOC-rich liquid promotes potential denitrification rate and decreases N2O/(N2O+N2) product ratio in a 0-2 m soil profile[J]. Soil Biology & Biochemistry, 2017, 106:1-8.
[5] [5]潘田,张幼宽. 太湖流域长兴县浅层地下水氮污染特征及影响因素研究[J]. 水文地质工程地质, 2013,40(4):7-12. [PAN T, ZHANG Y K. A study of nitrogen pollution in shallow groundwater and its affecting factors in Changxing county in the Taihu Basin[J]. Hydrogeology & Engineering Geology, 2013, 40(4):7-12. (in Chinese)]
[6] [6]Mckeon C A, Jordan F L, Glenn E P, et al. Rapid nitrate loss from a contaminated desert soil[J]. Journal of Arid Environments, 2005, 61(1):119-136.
[7] [7]陈哲,袁红朝,吴金水,等. 长期施肥制度对稻田土壤反硝化细菌群落活性和结构的影响[J]. 生态学报, 2009,29(11):5923-5929. [CHEN J, YUAN H C, WU J S, et al. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization[J]. Acta Ecologica Sinica, 2009, 29(11):5923-5929. (in Chinese)]
[8] [8]邓焕广,陈振楼,张菊,等. 上海市典型城市河岸带不同植被类型下土壤反硝化作用研究[J]. 长江流域资源与环境, 2014,23(11):1588-1594. [DENG H G, CHEN Z L, ZHANG J, et al. Study on soil denitrification under different vegetation types in typical coastal rivers in Shanghai[J]. Resour Environ Yangtze Basin, 2014, 23(11):1588-1594. (in Chinese)]
[9] [9]程建华. 林下表面流湿地沉积物中硝化和反硝化过程研究[D]. 合肥:安徽大学, 2016. [CHENG J H. Study on sediment nitrification and denitrification in a surface-flow constructed wetland under poplar grove[D]. Hefei: Anhui University, 2016. (in Chinese)]
[10] [10]张云,张胜,刘长礼,等. 包气带土层防护地下水污染的反硝化测定影响综述[J]. 水文地质工程地质, 2010,37(2):114-119. [ZHANG Y, ZHANG S, LIU C L, et al. A review of influence of denitrification measurement in soil layers of aeration zone aimed at groundwater protection[J]. Hydrogeology & Engineering Geology, 2010, 37(2):114-119. (in Chinese)]
[11] [11]王庆成,崔东海,王新宇,等. 帽儿山地区不同类型河岸带土壤的反硝化效率[J]. 应用生态学报, 2007,18(12):2681-2686. [WANG Q C, CUI D H, WANG X Y, et al. Soil denitrification rates in different type riparian zones in Maoershan mounlainous region of China[J]. Chinese Journal of Applied Ecology, 2007, 18(12):2681-2686. (in Chinese)]
[12] [12]孙志高,刘景双,杨继松,等. 三江平原典型小叶章湿地土壤硝化-反硝化作用与氧化亚氮排放[J]. 应用生态学报, 2007,18(1):185-192. [SUN Z G, LIU J S, YANG J S, et al. Nitrification-denitrification and N2O emission of typical calamagrostis angustifolia wetland soils in Sanjiang Plain[J]. Chinese Journal of Applied Ecology, 2007, 18(1):185-192. (in Chinese)]
[13] [13]Hobbie E A, Ouimette A P. Controls of Nitrogen Isotope Patterns in Soil Profiles[J]. Biogeochemistry, 2009, 95(2/3):355-371.
[14] [14]Peterson M E, Curtin D, Thomas S, et al. Denitrification in vadose zone material amended with dissolved organic matter from topsoil and subsoil[J]. Soil Biology & Biochemistry, 2014, 61(6):96-104.
[15] [15]Vitousek P M, Howarth R W. Nitrogen Limitation on Land and in the Sea: How Can It Occur?[J]. Biogeochemistry, 1991, 13(2):87-115.
[16] [16]张超,陈艳,张宇飞,等. 基于多元线性回归模型的云南昭通地质灾害易发性评价[J]. 水文地质工程地质, 2016,43(3):159-163. [ZHANG C, CHEN Y, ZHANG Y F, et al. Geohazard susceptibility evaluation in Zhaotong of Yunnan based on the multivariate linear regression model[J]. Hydrogeology & Engineering Geology, 2016, 43(3):159-163. (in Chinese)]
[17] [17]Hanson C A, Fuhrman J A, Horner-Devine M C, et al. Beyond biogeographic patterns: processes shaping the microbial landscape[J]. Nature reviews Microbiology, 2012, 10(7): 497.
[18] [18]Wrage N, Velthof G L, Beusichem M L V, et al. Role of nitrifier denitrification in the production of nitrous oxide[J]. Soil Biology & Biochemistry, 2001,33(12):1723-1732.
[19] [19]裴宏伟,沈彦俊,刘昌明,等. 华北平原典型农田氮素与水分循环[J]. 应用生态学报, 2015, 26(1):283-296. [PEI H W, SHEN Y J, LIU C M, et al. Nitrogen and water cycling of typical cropland in the North China Plain[J]. Chinese Journal of Applied Ecology, 2015, 26(1):283-296. (in Chinese)]
[20] [20]王常慧,邢雪荣,韩兴国. 草地生态系统中土壤氮素矿化影响因素的研究进展[J]. 应用生态学报, 2004,15(11):2184-2188. [WANG C H, XING X R, HAN X G. Advances in study of factors affecting soil N mineralization in grassland ecosystems[J]. Chinese Journal of Applied Ecology, 2004, 15(11):2184-2188. (in Chinese)]
[21] [21]Gasca D, Ross D. Utiliza o de balan os de água em zonas húmidas para relacionar processos hidrogeológicos e efeitos ecológicos[J]. Hydrogeology Journal, 2009, 17(1):115-133.
[22] [22]Nieder R, Schollmayer G, Richter J. Denitrification in the rooting zone of copped soils with regard to methodology and climate: a review[J]. Biology and Fertility of Soils, 1989, 8(3):219-226.
[23] [23]Colbourn P, Iqbal M M, Harper I W. Estimation of the total gaseous nitrogen losses from clay soils under laboratory and field conditions[J]. European Journal of Soil Science, 1984, 35(1):11-22.
[24] [24]Egginton G M, Smith K A. Losses of nitrogen by denitrification from a grassland soil fertilized with cattle slurry and calcium nitrate[J]. European Journal of Soil Science, 1986, 37(1):69-80.
[25] [25]Cannavo P, Richaume A, Lafolie F. Fate of nitrogen and carbon in the vadose zone: in situ and laboratory measurements of seasonal variations in aerobic respiratory and denitrifying activities[J]. Soil Biology & Biochemistry, 2004, 36(3):463-478.
[26] [26]Beggs R A, Hills D J, Tchobanoglous G, et al. Fate of nitrogen for subsurface drip dispersal of effluent from small wastewater systems[J]. Journal of Contaminant Hydrology, 2011, 126(1):19.
[27] [27]高阳,申孝军,李新强,等. 间作群体内土壤呼吸和硝化-反硝化作用研究[J]. 灌溉排水学报, 2015,34(2):16-19. [GAO Y, SHEN X J, LI X Q, et al. Study on soil respiration and nitrification-denitrification in intercropping[J]. Journal of Irrigation and Drainage, 2015, 34(2):16-19. (in Chinese)]
[28] [28]袁利娟,庞忠和. 包气带硝酸盐分布的差异性及其形成机理:以正定、栾城为例[J]. 水文地质工程地质, 2012,39(1):75-80. [YUAN L J, PANG Z H. Differences in nitrate distribution in the unsaturated zone and its formation mechanism: a case study of Zhengding and Luancheng[J]. Hydrogeology & Engineering Geology, 2012, 39(1):75-80. (in Chinese)]
[29] [29]Legout C, Mole-t J, Lefebvre S, et al. Investigation of biogeochemical activities in the soil and unsaturated zone of weathered granite [J]. Biogeochemistry, 2005, 75(2):329-350.
-
期刊类型引用(0)
其他类型引用(1)
计量
- 文章访问数: 1082
- HTML全文浏览量: 66
- PDF下载量: 665
- 被引次数: 1