Geochronological and Geochemical Characteristics of Early Silurian S-Type Granitic Gneiss in Takengon Area of Northern Sumatra and Its Tectonic Implications
-
摘要: 苏门答腊岛位于巽他大陆西南缘,被中苏门答腊构造带分隔为东、西苏门答腊两地体.其中东苏门答腊地体的基底年龄和构造归属均未得到很好地约束.在东苏门答腊北部Takengon地区新识别出的花岗片麻岩进行了锆石U-Pb年代学、原位Hf同位素和全岩地球化学研究.年代学结果表明该套花岗片麻岩的206Pb/238U加权平均年龄为442 ±5 Ma(MSWD=1.03),代表其结晶年龄.锆石的εHf(t)介于-1.3至-7.8之间.地球化学研究表明,样品富SiO2(69.97%~74.30%)和Al2O3(13.90%~15.93%),相对贫TiO2(0.48%~0.61%)、MgO(0.54%~0.93%)和CaO(0.11%~0.25%).样品具高的A/CNK值(2.58~3.06)和CIPW刚玉体积百分含量(10.0%~11.4%),具有S型花岗岩的特征.其轻重稀土分异明显,富集LILE(Rb、Th、U),亏损HFSE(Nb、Ta、Ti).地球化学研究表明Takengon花岗片麻岩是变沉积岩部分熔融形成的.该套花岗片麻岩的发现证实了在东苏门答腊地块发育有前志留世基底岩石,其形成与原特提斯洋的演化有关.Abstract: Sumatra Island is located in the southwestern margin of the Sundaland, and is divided into East/West Sumatra by the Medial Sumatran Zone. While East Sumatran basement affinity and tectonic evolution are not well defined. The Early Paleozoic granitic gneisses have been identified from the East Sumatra Terrane, with providing zircon U-Pb age, in-situ Hf isotopic and geochemical results. Geochronological result yields a 206Pb/238U mean age of 442 ±5 Ma (MSWD = 1.03), representing the crystalline age. Zircon εHf (t) values range from -1.3 to -7.8. The whole-rock geochemical characteristics show that our samples are characterized by high SiO2 (69.97%-74.30%) and Al2O3 (13.90%-15.93%), but poor in TiO2 (0.48%-0.61%), MgO (0.54%-0.93%) and CaO (0.11%-0.25%). These samples have high A/CNK (2.58-3.06) and CIPW-normalized corundum (10.0%-11.4%), similar to those of the S-type granite. They have obvious fractionation between LREEs and HREEs. These samples are characterized by enrichment in LILEs (Rb, Th, U) and depletion in HFSEs (Nb, Ta, Ti). The geochemical results indicate that the Takengon granitic gneisses are originated from the partial melting of the meta-sediments during the evolution of the Prototethyan Ocean. This study confirms the existing of Early Silurian basement rocks in the East Sumatra Terrane, which were related to the Prototethyan evolution.
-
Key words:
- granitic gneiss /
- Early Silurian /
- Sumatra /
- prototethyan /
- zircon U-Pb geochronology /
- zircon Hf isotopes /
- geochemistry
-
0. 引言
东南亚地区众多块体的构造属性及相互之间的拼合历史一直是特提斯-环南海构造地质学研究的热点(Barber and Crow, 2009;Wang et al., 2018).自古生代起这些地块从冈瓦纳大陆北缘逐次裂离,并随着特提斯洋的演化,在中生代时期逐步拼贴于欧亚大陆的南缘(如,Wang et al., 2013, 2016;解超明等,2019).已有的研究表明,特提斯洋的演化存在原、古、新三个阶段(如Zhong et al., 1998;Wang et al., 2018),其中古特提斯和新特提斯构造演化的研究较多,并认识到古特提斯缝合带从青藏高原腹地的龙木错-双湖向东南延伸至昌宁-孟连-因他暖-文冬-劳勿地区(图 1a;如Qian et al., 2016;Wang et al., 2016, 2018;Zhang et al., 2016),而拉萨地体南部的印度河-雅鲁藏布缝合带则被认为是新特提斯主缝合带(如Metcalfe,1996).但相对于古特提斯和新特提斯的研究,对原特提斯构造演化的研究相对较少.原特提斯洋被认为是特提斯演化历史中最早的一期大洋,在早古生代存在于冈瓦纳超大陆北缘并可能存在多个分支洋盆(如Stampfli et al., 2013;Wang et al., 2013;Zhao et al., 2018).前人研究发现,在青藏高原及其东缘和东南亚地区普遍发育有一期早古生代晚期的构造-岩浆事件(如,Chen et al., 2007;Liu et al., 2009;董美玲等,2012;李再会等,2012;林仕良等,2012;刘琦胜等,2012;熊昌利等,2012;Zhang et al., 2012;蔡志慧等,2013;Wang et al., 2013;邢晓婉等,2015;康欢等,2016;Shi et al., 2016;崔晓琳等,2017).这次事件被认为和原特提斯洋的俯冲闭合有关(Wang et al., 2013;Zhao et al., 2018).目前,对于原特提斯洋主缝合带的位置还未能很好地界定,但原特提斯洋的存在已被学者们证实(Metcalfe,1996;Yin and Harrison, 2000;Wang et al., 2013;Zhao et al., 2018).在昆仑-三江地区发现的残余洋壳和活动大陆边缘岩石组合被认为属于原特提斯洋的残余(如Yin and Harrison, 2000),以及在滇缅泰板块内零星报道有与原特提斯洋演化有关的岩浆和变质记录(如Chen et al., 2007;Wang et al., 2013;邢晓婉等,2015).但是对这些岩浆岩的研究仍然不够,对东南亚地区的南部,如苏门答腊是否存在原特提斯地质记录仍鲜有报道(Metcalfe,2000),东南亚地区原特提斯洋的演化及延伸仍是亟待解决的问题.苏门答腊岛位于巽他大陆西南缘,介于印度-澳大利亚板块和欧亚大陆之间(图 1a),其基底被认为是一套石炭-二叠纪的沉积岩或浅变质沉积岩,是特提斯构造域的延伸(Booi et al., 2008;Zhang et al., 2018),但是缺少岩浆岩及基底属性研究.最近,我们的野外地质调查发现,在苏门答腊岛北部的Takengon地区识别出了一套花岗片麻岩(图 1b),通过对其系统的锆石U-Pb年代学和Lu-Hf同位素及全岩主-微量元素研究,得出其为早志留世S型花岗岩.以此为依据,结合区域地质资料认为其代表了原特提斯地质记录,这为原特提斯构造域的向南延伸提供重要依据.
图 1 区域构造简图(a)和苏门答腊北部地质简图与采样点位置(b)据Wang et al.(2016, 2018)修改Fig. 1. Simplified geological map with tectonic frame of the region (a) and simplified geological map of northern Sumatra (b)1. 地质背景与样品描述
苏门答腊岛是印度尼西亚最西侧的岛屿,位于马来半岛以南、印度洋以东.现有的地质资料显示:苏门答腊岛被中苏门答腊构造带(MSZ)分为东苏门答腊地体(EST)和西苏门答腊地体(WST).东苏门答腊地体出露了与滇缅泰板块相似的下二叠统冰碛含砾泥岩和与冈瓦纳具有亲缘性的冷水动植物化石,因此被认为是滇缅泰板块的一部分(Barber and Crow, 2009).
现有研究表明,苏门答腊晚古生代沉积地层的碎屑锆石发育~510 Ma、~590 Ma、~935 Ma、~1 070 Ma、~1 170 Ma、~1 700 Ma和~2 500 Ma的年龄峰值,类似滇缅泰、拉萨、西缅甸和西澳大利亚地块(Zhang et al., 2018).地理上苏门答腊岛向北与泰国普吉岛可以连接,也反映其可能属于滇缅泰的一部分.但滇缅泰板块由显生宙沉积岩、岩浆岩和变质岩组成,其岩浆岩继承锆石和沉积碎屑锆石的研究推测该地块可能具有太古宙陆核和前寒武纪基底(Zhang et al., 2018).然而,在苏门答腊地区目前仅在钻孔资料中发现有疑似泥盆纪的地层出露(Barber and Crow, 2009),区域出露最古老的岩浆岩被认为是晚古生代的火山岩系(Barber and Crow, 2009),未发现前石炭纪的地层或岩浆岩.因此其基底被认为是一套石炭-二叠纪的石英岩、硅质岩、页岩及片岩组合(Zhang et al., 2018).其中石炭系地层为打努巴里群,其下段为砂页岩,中段为灰岩,上段为伯赫洛克组含砾泥岩和冰碛岩(Barber,2000).打努巴里群可以和马来西亚兰卡威岛的辛哈群、泰国西部的普吉群和印度尼西亚班达楠榜的古高卡斯杂岩相对应.二叠系彭汗群与下伏石炭系呈角度不整合关系,其下段为一套含火山岩夹层的砂岩、页岩、灰岩,中段为灰岩,上段为含燧石的砂岩、页岩.中生界沃伊拉群与下伏地层呈平行不整合接触,主要为侏罗系-下白垩统,其下段为含蛇纹岩、枕状熔岩、硅质岩和硬砂岩的推覆体,中段为礁灰岩,上段为中-酸性火山岩(McCarthy et al., 2001).苏门答腊岛报道的岩浆岩K-Ar年龄主要为海西期(290~256 Ma)火山岩、印支-燕山早期(224~180 Ma)火山/侵入岩、燕山晚期(149~146 Ma)火山岩、喜山早期(60~48 Ma)火山/侵入岩、喜山中期(24~15 Ma)火山/侵入岩以及喜山晚期(< 6 Ma)火山岩.
本文采样点位于印度尼西亚苏门答腊岛北部亚齐特别行政区Takengon地区(图 1b).野外观察为灰白色花岗片麻岩,具片麻状构造、线理和面理发育(图 2a).镜下观察其主要矿物有石英(~51%)、长石(~35%)和白云母(~12%),副矿物可见磁铁矿和绢云母等,其中石英大多具波状消光,发生膨突或亚颗粒旋转重结晶(图 2b),可见旋转的长石斑晶和拉长云母,以及细小的石英、长石和云母的定向排列(图 2c).
2. 分析方法
选取新鲜的样品进行年代学和Hf同位素测试.锆石的挑选采用传统的重液法和磁选法,在双目镜下挑选出无裂隙、无包体、透明干净的锆石颗粒,将其粘贴在环氧树脂靶上,并抛光至露出锆石中心.用透反射光照片和阴极发光(CL)照片观察锆石内部结构.锆石的CL照片在中山大学地球科学与工程学院拍摄,采用Carl Zeiss ΣigmaTM场发射扫描电子显微镜完成.锆石原位U-Pb同位素、Hf同位素和微量元素含量测试在中山大学地球科学与工程学院广东省地球动力作用与地质灾害重点实验室完成.锆石U-Pb定年分析和微量元素测定所采用的仪器包括iCAP RQ型电感耦合等离子体质谱(ICP-MS)和GeolasHD型193 nm ArF激光剥蚀系统。实验过程中激光束斑直径32 μm,频率5 Hz,详细的分析测试过程见Wang et al.(2020).采用标准锆石91500 (1 062.4±0.6 Ma; Wiedenbeck et al., 1995)和Plešovice (337.13±0.37 Ma; Sláma et al., 2008)进行U-Pb同位素分馏校正,29Si作为内标,采用玻璃标准物质NIST 610进行微量元素校正.数据的离线处理采用Glitter4.4.5进行(Griffin et al., 2008),谐和图、均值年龄图的绘制采用Isoplot完成(Ludwig, 2001).锆石原位Lu-Hf同位素分析所用仪器由NeptunePlus型多接收电感耦合等离子体质谱(MC-ICP-MS)和GeolasHD型193 nm ArF激光剥蚀系统组成.激光束斑直径和频率分别为44 μm和6 Hz,详细的分析流程类似于Hu et al.(2012).采用标准锆石91500校正同位素的分馏效应,标准锆石Plešovice监控仪器.采用172Yb和175Lu扣除176Hf的同质异位素176Yb和176Lu的干扰.分别使用176Yb/172Yb=0.588 6(Chu et al., 2002)和176Lu/175Lu=0.026 56 (de Bievre and Taylor, 1993)进行校正.计算εHf(t)值的各项参数中,176Lu的衰变常数采用1.867×10-11 a-1(Scherer et al., 2001),现今球粒陨石的176Hf/177Hf和176Lu/177Hf值分别采用0.282 772和0.033 2 (Blichert-Toft and Albarede, 1997),亏损地幔的176Hf/177Hf采用0.283 25 (Vervoort and Blichert-Toft, 1999);二阶段模式年龄计算中,平均地壳的176Lu/177Hf值采用0.015,fcc采用-0.55(Griffin et al., 2002).
选取代表性样品进行全岩主微量元素测试.将样品粉碎至200目待测.全岩主量元素测试在中山大学地球科学与工程学院广东省地球动力作用与地质灾害重点实验室完成,采用ARL Perform’X 4200型X射线荧光光谱仪(XRF)进行测试.使用熔片法,将烘干后的样品与硼酸锂混合熔剂称量至坩埚中,加入饱和碘化铵(NH4I)溶液,在铂金坩埚中加热至1 050 ℃共熔制成熔片,熔片方法参考Claisse and Blanchette(2007),分析精度优于5%.详细的实验方法见Wang et al.(2020).全岩微量元素前处理测试在中国科学院地球化学研究所矿床地球化学国家重点实验室进行,将样品在1:1混合的HF和HNO3溶液中185 ℃消解3天,蒸干后再加入HNO3溶液消解8小时.微量元素溶液分析在中山大学地球科学与工程学院广东省地球动力作用与地质灾害重点实验室完成,采用Thermo ScientificTM iCAP RQ ICP-MS进行测试,分析精度优于10%.详细的测试流程见Wang et al.(2020).
3. 测试结果
3.1 锆石U-Pb年代学和Lu-Hf同位素组成
本文对样品(18SM-23-3)选取了30颗锆石进行LA-ICP-MS定年测试.锆石呈透明至半透明、无色至浅褐色、自形至半自形,长度大致在50~150 μm之间,可见明显的震荡环带.少数锆石存在核-边结构(图 3).锆石U-Pb年代学测试结果见附表 1,锆石元素测试结果见附表2.30个锆石分析点的年龄谐和图见图 4a,其中22个年龄谐和分析点的206Pb/238U年龄介于422~444 Ma,加权平均年龄为442 ± 5 Ma(MSWD = 1.03),代表其结晶年龄.其Th/U值介于0.03~0.66,大部分大于0.10(图 4b).在锆石稀土元素球粒陨石标准化图解中(图 4c),绝大部分锆石具显著的Ce正异常和Pr及Eu的负异常,呈亏损的轻稀土元素(LREE)的左倾型,具典型的岩浆岩锆石的配分特点.对其中21个谐和测试点进行了锆石原位的Lu-Hf同位素分析(图 3),分析数据见附表3.其中176Yb/177Hf和176Lu/177Hf比值范围分别为0.0525 64~0.141 751和0.001 868~0.004 844.fLu/Hf介于-0.94至-0.85,平均值为-0.91.εHf(t)值变化于-1.3至-7.8,二阶模式年龄TDM2介于1.5~1.9 Ga.
表 1 苏门答腊Takengon花岗片麻岩样品全岩主量元素(%)和微量元素(10-6)分析结果Table Supplementary Table Major and trace elements analytical results for the Takengon granitic gneissic samples in Sumatra样品号 18SM-23-3 18SM-23-4 18SM-23-5 18SM-23-6 18SM-23-7 SiO2 71.80 69.97 70.12 74.30 71.14 TiO2 0.53 0.61 0.48 0.58 0.53 Al2O3 14.62 15.76 13.93 13.90 15.26 Fe2O3T 3.54 3.80 5.20 3.65 3.65 MnO 0.04 0.05 0.06 0.02 0.07 MgO 0.61 0.85 0.93 0.54 0.55 CaO 0.18 0.24 0.25 0.11 0.17 Na2O 0.10 0.10 0.10 0.02 0.09 K2O 4.77 4.68 4.25 3.97 4.79 P2O5 0.15 0.17 0.15 0.07 0.15 LOI 3.44 3.62 3.83 3.08 3.58 Total 99.80 99.85 99.31 100.24 99.97 A/CNK 2.58 2.77 2.66 3.06 2.70 A/NK 2.71 2.98 2.89 3.20 2.85 Sc 8.04 10.1 8.40 8.57 7.74 V 48.0 60.0 45.0 51.0 48.0 Cr 18.0 22.0 17.0 36.0 16.0 Co 4.63 5.57 5.36 7.12 4.99 Ni 4.62 5.55 7.18 5.81 5.16 Ga 18.9 23.8 18.5 19.7 19.8 Rb 167 202 167 147 173 Sr 27.2 14.0 27.1 52.3 24.0 Y 26.1 35.2 31.9 28.8 32.8 Zr 207 229 201 238 202 Nb 13.2 16.6 12.2 13.9 13.4 Cs 8.70 11.6 12.6 5.03 7.00 Ba 634 539 598 711 554 La 32.4 33.2 28.8 46.0 45.1 Ce 66.4 70.2 60.1 94.6 91.1 Pr 8.29 8.81 7.62 11.8 11.4 Nd 31.3 33.7 28.9 44.4 42.1 Sm 5.89 6.88 5.96 7.97 8.23 Eu 0.84 0.88 0.88 0.88 1.04 Gd 5.43 6.54 5.78 6.94 7.30 Tb 0.91 1.16 1.00 1.08 1.19 Dy 5.39 7.19 6.05 6.04 6.86 Ho 1.11 1.52 1.29 1.25 1.39 Er 3.31 4.58 3.95 3.77 4.10 Tm 0.54 0.72 0.64 0.58 0.63 Yb 3.51 4.73 4.18 3.91 4.12 Lu 0.53 0.74 0.65 0.59 0.61 Hf 7.46 8.40 7.11 8.66 7.28 Ta 1.32 1.60 1.24 1.17 1.40 Pb 2403 2737 3041 1239 1316 Th 16.5 18.0 15.7 13.6 16.1 U 3.41 3.31 2.78 3.48 2.33 图 4 Takengon花岗片麻岩的锆石U-Pb年龄谐和图和加权平均年龄图(a)、锆石U-Th图解(b)和锆石稀土元素球粒陨石标准化图解(c)Fig. 4. Concordia and weighted mean age diagram of zircon U versus Pb data (a), Th-U diagram of zircon trace elements data (b) and chondrite-normalized REE diagram of zircons (c) for the representative samples of Takengon granitic gneissic3.2 全岩地球化学特征
样品矿物组合在镜下显示出一定的定向排列,指示了样品发生过后期的变形变质作用,但是无明显的矿物相变,因此,可以利用样品的全岩主微量元素数据来反映样品的地球化学特征.样品的全岩主微量元素分析结果见表 1.样品富SiO2(69.97%~74.30%),具较高的Al2O3含量(13.90%~15.93%),相对贫TiO2(0.48%~0.61%)、MgO(0.54%~0.93%)和CaO(0.11%~0.25%).样品的烧失量(LOI)与REE、Y、Zr和Hf含量无明显相关关系,而Zr含量与Y、Yb、Nb、La、Th含量均呈正相关关系(表 1),表明岩石未遭受明显的后期低温蚀变作用.样品的CIPW标准矿物计算表明,样品主要含石英(体积百分含量,54.3%~62.2%)、正长石(体积百分含量,25.1%~30.5%)、刚玉(体积百分含量,10.0%~11.4%),QAP图解投在了富石英花岗岩类区域(图 5a).样品的A/CNK值介于2.58~3.06,属强过铝质花岗岩.样品在CaO-FeOT+MgO-Al2O3-(Na2O+K2O)图解中归为S型花岗岩类(图 5b).此外,样品在FeOT/MgO-10 000×Ga/Al图解和10 000×Ga/Al-(Zr+Nb+Ce+Y)图解中也都落入非A型花岗岩区内(图 5c,5d).
图 5 苏门答腊Takengon花岗片麻岩样品的QAP图解(a)、CaO-FeOT+MgO-Al2O3-(Na2O+K2O)图解(b)、FeOT/MgO-10 000×Ga/Al图解(c)和10000×Ga/Al-(Zr+Nb+Ce+Y)图解(d)Fig. 5. QAP diagram (a), CaO-FeOT+MgO-Al2O3-(Na2O+K2O) diagram (b), FeOT/MgO-10 000×Ga/Al diagram (c) and 10 000×Ga/Al-(Zr+Nb+Ce+Y) diagram (d) diagrams for the Takengon granitic gneissic samples in Sumatra全岩REE球粒陨石标准化图解中(图 6a),样品都表现出显著的右倾特征,总稀土元素含量达56×10-6~230×10-6,轻重稀土分异明显,(La/Yb)N=4.94~8.43, (Gd/Yb)N=1.14~1.47,Eu负异常显著(Eu/Eu*=0.35~0.44).在不相容元素原始地幔标准化图解中(图 6b),样品呈现富集大离子亲石元素和亏损高场强元素(HFSE),Nb、Ta、Ti等负异常明显,Zr和Hf亏损不明显.其配分型式与早古生代(~490 Ma)喜马拉雅和滇西北花岗质岩石相类似(图 6a,6b).
图 6 苏门答腊Takengon花岗片麻岩的稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)球粒陨石标准化数据据Sun and McDonough(1989);原始地幔标准化数据据Taylor and McLennan(1985);滇西北和喜马拉雅早古生代花岗岩数据据Chen et al.(2007), 张泽明等(2008), Liu et al.(2009), 时超等(2010)和Zhang et al.(2012)Fig. 6. The patterns of the chondrite-normalized REE diagram (a) and primitive mantle-normalized trace elements spidergram (b) for the Takengon granitic gneissic in Sumatra4. 讨论
4.1 岩石成因
样品的锆石多为自形-半自形且具有明显的震荡环带,REE配分特征与典型岩浆岩类似.Watson et al.(2006)归纳了锆石中Ti与其形成温度之间对应关系,并广泛被用于岩浆岩特别是运用于中-酸性岩浆岩的形成温度的计算,被称为锆石Ti温度计.使用22个谐和年龄点的锆石Ti温度计计算得出成岩温度平均值为740 ℃,大致与典型S型花岗岩的形成温度相同,可以代表其成岩温度.锆石CL图中明显的自形-半自形特征和未见磨圆、LA-ICP-MS 206Pb/238U年龄较为集中(图 4a)、薄片下自形的钾长石斑晶等均暗示其为长英质正片麻岩而非副片麻岩.此外,样品较高的白云母含量、铝饱和指数(2.58~3.06)、CIPW中刚玉体积百分含量高(10.0%~11.4%),均指示其为S型花岗质岩石.
过铝质S型花岗岩的成因通常被认为是贫铝岩浆的分离结晶或地壳(变)沉积岩或(变)火成岩的深熔作用形成的(如Sylvester,1998;马超等,2019).Takengon花岗片麻岩样品具较高的K2O含量(3.97%~4.79%),且K2O/Na2O值远大于1.样品较低的Sr、Ba含量暗示了变泥质岩或沉积岩中的白云母脱水熔融过程.此外,样品富SiO2(69.97%~74.30%),贫TiO2(0.48%~0.61%)和MgO(0.54%~0.93%),A/CNK远大于1.1(2.58~3.06),富集Rb、Th、U等元素,亏损Nb、Ta、Ti、Sr等元素(图 6b).这些特征结合负的εHf(t)值(-1.3~-7.8)均表明该套S型花岗岩为变沉积岩部分熔融形成的(Sylvester,1998;Wang et al., 2013, 2016;邢晓婉等,2015).
变沉积岩部分熔融形成的过铝质S型花岗质岩石可以通过全岩Al2O3/TiO2、Rb/Sr和Rb/Ba值等指标判别其源区性质.滇西北和青藏腹地早古生代的花岗质岩石大多具有较高的Al2O3/TiO2值、Rb/Sr值和Rb/Ba值(Chen et al., 2007;张泽明等,2008;Liu et al., 2009;时超等,2010;Zhang et al., 2012).在Rb/Sr-Rb/Ba图解中(图 7a),我们的样品大部分落入富粘土贫斜长石的页岩衍生熔体源区,类似喜马拉雅强过铝质花岗岩.这种特征通常指示变沉积岩为主的源区在较低温度下发生部分熔融的过程(如Sylvester,1998).本文使用同属东基梅里陆块的南羌塘上地壳沉积岩REE含量代替源区成分.使用批式部分熔融模型代表熔融过程.利用Hanson(1980)给出的沉积岩源区矿物平均组分及分配系数进行计算.具体公式为:
图 7 苏门答腊Takengon花岗片麻岩样品的Rb/Sr-Rb/Ba图解(a)和稀土元素部分熔融模拟(b)Lachlan褶皱带和喜马拉雅强过铝花岗岩数据和端元混合曲线据Sylvester (1998); 南羌塘平均上地壳沉积岩数据据Gao et al. (1998),元素配分系数和矿物含量百分比数据据Hanson (1980);(a)中底图转引自Wang et al. (2016)Fig. 7. Rb/Sr versus Rb/Ba (a) and simulation of partial melting for REE (b) for the Takengon granitic gneissic samples in Sumatra(1) 式(1)中Cl和Co分别代表熔体和源区中的元素浓度,Do代表源区的总分配系数,F代表熔融程度.模拟计算结果见图 7b.结果表明,Takengon花岗质岩石可由上地壳沉积岩发生30%~40%部分熔融形成.前人在滇缅泰板块识别出的早古生代花岗质岩石均具有负的εHf(t)值,且具有较为古老的Hf二阶段模式年龄(大多介于1.5~2.0 Ga),综合指示了滇缅泰板块的早古生代花岗质岩石可能由古-中元古代的地壳岩石再造形成(图 8).Zhang et al.(2018)分析了苏门答腊晚古生代碎屑锆石的年代学和Hf同位素数据,发现其二阶段模式年龄均指向了一个1.1~3.0 Ga的地幔源区.上述特征均指示了区域早古生代岩浆作用并没有新生幔源物质的参与.综合上述特征判断,Takengon花岗片麻岩的原岩可能是上地壳富粘土贫斜长石的沉积岩发生中-低比例的部分熔融所形成的过铝质S型花岗质岩石.
图 8 苏门答腊Takengon花岗片麻岩的锆石εHf(t)-年龄图解(a、b)苏门答腊碎屑锆石数据据Zhang et al.(2018);滇缅泰板块早古生代花岗质岩石数据据Chen et al.(2007);Liu et al.(2009);董美玲等(2012);Wang et al.(2013);蔡志慧等(2013);邢晓婉等(2015);康欢等(2016);崔晓琳等(2017)Fig. 8. Zircon εHf (t) versus age diagram of Takengon granitic gneiss in Sumatra (a, b)4.2 构造意义
Zhang et al.(2018)对苏门答腊岛碎屑锆石的研究给出了~510 Ma、~590 Ma、~935 Ma、~1 070 Ma、~1 170 Ma、~1 700 Ma和~2 500 Ma等多个年龄峰值,说明苏门答腊岛很可能存在着前寒武纪的结晶基底(Zhang et al., 2018).但是目前的研究还未发现前石炭纪的岩石出露,因此苏门答腊岛的基底通常被认为是一套石炭-二叠纪的变质岩(Booi et al., 2008;Barber and Crow, 2009;Zhang et al., 2018).苏门答腊Takengon花岗片麻岩样品的LA-ICP-MS锆石206Pb/238U加权平均年龄为442±5 Ma(MSWD=1.03),首次证实了在东苏门答腊地体北部存在有由(变)沉积岩部分熔融而成的早志留世S型花岗片麻岩,同时也证实了苏门答腊岛的基底并非以往所认为的石炭-二叠系.S型花岗岩可形成于板内、岛弧、同碰撞/碰撞后等多种构造背景.苏门答腊Takengon花岗片麻岩样品的全岩REE球粒陨石标准化图解表现出显著右倾特征(图 6a),具Eu负异常(Eu/Eu*=0.35~0.44).样品富集LILE、亏损HFSE(图 6b),(Hf/Sm)PM=1.27~1.82,与弧岩浆类似.苏门答腊Takengon花岗片麻岩为强过铝质的S型花岗质岩石,也具负的εHf(t)值(-1.3~-7.8)和较老的二阶模式年龄(TDM2=1.5~1.9 Ga)(图 6a、6b和图 8),明显不同于含有中基性岩浆残余矿物(角闪石等)和较低的A/CNK值(通常小于1.1)的I型花岗岩和与弧相关的酸性岩浆岩.
早古生代时期,印支板块、北羌塘地体、南羌塘地体、拉萨地体、西缅甸地体和滇缅泰板块等都位于冈瓦纳大陆的北缘(Wang et al., 2013;Zhao et al., 2018).而随着原特提斯洋的俯冲及闭合,在上述板块均保留了原特提斯有关的地质记录(如,Chen et al., 2007;Liu et al., 2009;董美玲等,2012;蔡志慧等,2013;Wang et al., 2013;邢晓婉等,2015;康欢等,2016;崔晓琳等,2017).近年来,在青藏高原腹地(主要是羌塘地体、拉萨地体和喜马拉雅地体)、北印度、尼泊尔和滇缅泰板块相继识别出了寒武纪和奥陶纪的花岗质岩石(如,Chen et al., 2007;董美玲等,2012;刘琦胜等,2012;Zhang et al., 2012;康欢等,2016),及同期的花岗片麻岩(如李再会等,2012;林仕良等,2012;Wang et al., 2013;邢晓婉等,2015;崔晓琳等,2017),且上述区域均可见寒武-奥陶系地层和上覆地层间的角度不整合现象(如,Brookfield,1993).而这一些的研究均反映出这些区域存在一次广泛的早古生代构造-岩浆事件.一些学者认为该次事件可能是~570~520 Ma泛非造山事件的响应(如许志琴等,2005;林仕良等,2012).但是滇缅泰板块识别出的早古生代花岗质岩石形成的年龄集中在520~435 Ma,与~570~520 Ma的造山事件缺乏时间上的相关性.此外,青藏高原南部到滇缅泰板块出露有寒武纪玄武质凝灰岩、玄武岩、安山岩和酸性火山岩(Brookfield,1993).如印度西北部高喜马拉雅496 ± 14 Ma的基性岩显示为汇聚边界背景(Miller et al., 2001);拉萨地体申扎晚寒武世双峰式火山岩指示其为主动大陆边缘相关背景(计文化等,2009);保山地块下奥陶统底砾岩之下覆盖的公养河群镁铁质熔岩呈弧火山岩特征(如杨学俊等,2012);保山地块473.0 ± 3.8 Ma和444.0 ± 4.0 Ma辉长岩显示弧后盆地背景(Wang et al., 2012).Wang et al.(2013)统计了冈瓦纳北缘早古生代花岗质岩石的成岩年龄和相关变质岩的变质年龄,发现年龄谱系自西向东逐渐变年轻.这可能暗示了原特提斯洋在早古生代时期具有剪刀式的俯冲-闭合过程.也有一些学者认为上述镁铁质岩石和同期花岗岩都指示在冈瓦纳北缘存在一个约490 Ma与原特提斯洋的俯冲闭合有关的安第斯型活动大陆边缘(Chen et al., 2007;张泽明等,2008;Liu et al., 2009;Wang et al., 2012;Zhang et al., 2012;蔡志慧等,2013;Wang et al., 2013).我们对滇缅泰板块识别出的早古生代花岗质岩石的形成年龄进行的统计结果如图 9所示.这些数据表明滇缅泰板块上述花岗质岩石的年龄集中在510~435 Ma,结合区域地质情况,可分为弧花岗岩(510~480 Ma)、同碰撞花岗岩(500~460 Ma)和后碰撞花岗岩(470~440 Ma)(图 9),而苏门答腊Takengon花岗片麻岩大致处在后碰撞花岗岩集中的年龄范围内,暗示其可能形成于后碰撞背景.上述特征表明,从青藏高原到滇西、缅甸直至苏门答腊,绵延数千公里的特提斯构造域内存在着一次显著的早古生代构造-岩浆事件.研究认为,在后碰撞伸展背景下,由于加厚的岩石圈拆沉和软流圈底侵可以导致岩石圈热界面升高,上部岩石发生部分熔融可以形成花岗质岩石(Huang et al., 2019).综合上述证据表明,苏门答腊Takengon花岗片麻岩可以类比于滇缅泰板块同时代花岗质岩浆岩,其形成可能并非孤立岩浆事件,很可能是东冈瓦纳北缘早古生代原特提斯洋俯冲-闭合过程中地壳(变沉积岩)部分熔融产物.
图 9 滇缅泰板块早古生代花岗质岩石年龄及构造背景图中数据参考文献见Chen et al.(2007);Liu et al.(2009);董美玲等(2012);李再会等(2012);刘琦胜等(2012);熊昌利等(2012);Wang et al.(2013);蔡志慧等(2013);邢晓婉等(2015);Shi et al.(2016);康欢等(2016);崔晓琳等(2017)Fig. 9. Summary of age and tectonic settings data of the Early Paleozoic granitic rocks in the Sibumasu block5. 结论
(1) 苏门答腊Takengon花岗片麻岩的LA-ICP-MS锆石U-Pb年龄为442 ± 5 Ma,代表了其结晶年龄,首次证实在苏门答腊岛存在志留纪的岩浆作用.
(2) 苏门答腊Takengon花岗片麻岩具高的铝饱和指数(2.58~3.06)和高的CIPW刚玉体积百分含量(10.0%~11.4%),其地球化学属性类似于S型花岗质岩石.
(3) 苏门答腊Takengon地区的S型花岗片麻岩可能是早古生代东冈瓦纳北缘原特提斯洋俯冲-闭合过程中地壳(变沉积岩)部分熔融产物.
附表见本刊官网(http://www.earth-science.net).
致谢: 感谢广州海洋地质调查局的张立敏博士在野外工作中提供的帮助.感谢中国科学院地球化学研究所的胡静高级工程师、中山大学的甘成势、王玉琨和杨雪博士在实验分析中提供的帮助.两位审稿人和编辑部老师给出了详细且富有建设性的意见,使得本文质量得以提高,在此衷心感谢. -
图 1 区域构造简图(a)和苏门答腊北部地质简图与采样点位置(b)
据Wang et al.(2016, 2018)修改
Fig. 1. Simplified geological map with tectonic frame of the region (a) and simplified geological map of northern Sumatra (b)
图 4 Takengon花岗片麻岩的锆石U-Pb年龄谐和图和加权平均年龄图(a)、锆石U-Th图解(b)和锆石稀土元素球粒陨石标准化图解(c)
Fig. 4. Concordia and weighted mean age diagram of zircon U versus Pb data (a), Th-U diagram of zircon trace elements data (b) and chondrite-normalized REE diagram of zircons (c) for the representative samples of Takengon granitic gneissic
图 5 苏门答腊Takengon花岗片麻岩样品的QAP图解(a)、CaO-FeOT+MgO-Al2O3-(Na2O+K2O)图解(b)、FeOT/MgO-10 000×Ga/Al图解(c)和10000×Ga/Al-(Zr+Nb+Ce+Y)图解(d)
Fig. 5. QAP diagram (a), CaO-FeOT+MgO-Al2O3-(Na2O+K2O) diagram (b), FeOT/MgO-10 000×Ga/Al diagram (c) and 10 000×Ga/Al-(Zr+Nb+Ce+Y) diagram (d) diagrams for the Takengon granitic gneissic samples in Sumatra
图 6 苏门答腊Takengon花岗片麻岩的稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)
球粒陨石标准化数据据Sun and McDonough(1989);原始地幔标准化数据据Taylor and McLennan(1985);滇西北和喜马拉雅早古生代花岗岩数据据Chen et al.(2007), 张泽明等(2008), Liu et al.(2009), 时超等(2010)和Zhang et al.(2012)
Fig. 6. The patterns of the chondrite-normalized REE diagram (a) and primitive mantle-normalized trace elements spidergram (b) for the Takengon granitic gneissic in Sumatra
图 7 苏门答腊Takengon花岗片麻岩样品的Rb/Sr-Rb/Ba图解(a)和稀土元素部分熔融模拟(b)
Lachlan褶皱带和喜马拉雅强过铝花岗岩数据和端元混合曲线据Sylvester (1998); 南羌塘平均上地壳沉积岩数据据Gao et al. (1998),元素配分系数和矿物含量百分比数据据Hanson (1980);(a)中底图转引自Wang et al. (2016)
Fig. 7. Rb/Sr versus Rb/Ba (a) and simulation of partial melting for REE (b) for the Takengon granitic gneissic samples in Sumatra
图 8 苏门答腊Takengon花岗片麻岩的锆石εHf(t)-年龄图解(a、b)
苏门答腊碎屑锆石数据据Zhang et al.(2018);滇缅泰板块早古生代花岗质岩石数据据Chen et al.(2007);Liu et al.(2009);董美玲等(2012);Wang et al.(2013);蔡志慧等(2013);邢晓婉等(2015);康欢等(2016);崔晓琳等(2017)
Fig. 8. Zircon εHf (t) versus age diagram of Takengon granitic gneiss in Sumatra (a, b)
图 9 滇缅泰板块早古生代花岗质岩石年龄及构造背景
图中数据参考文献见Chen et al.(2007);Liu et al.(2009);董美玲等(2012);李再会等(2012);刘琦胜等(2012);熊昌利等(2012);Wang et al.(2013);蔡志慧等(2013);邢晓婉等(2015);Shi et al.(2016);康欢等(2016);崔晓琳等(2017)
Fig. 9. Summary of age and tectonic settings data of the Early Paleozoic granitic rocks in the Sibumasu block
表 1 苏门答腊Takengon花岗片麻岩样品全岩主量元素(%)和微量元素(10-6)分析结果
Table 1. Major and trace elements analytical results for the Takengon granitic gneissic samples in Sumatra
样品号 18SM-23-3 18SM-23-4 18SM-23-5 18SM-23-6 18SM-23-7 SiO2 71.80 69.97 70.12 74.30 71.14 TiO2 0.53 0.61 0.48 0.58 0.53 Al2O3 14.62 15.76 13.93 13.90 15.26 Fe2O3T 3.54 3.80 5.20 3.65 3.65 MnO 0.04 0.05 0.06 0.02 0.07 MgO 0.61 0.85 0.93 0.54 0.55 CaO 0.18 0.24 0.25 0.11 0.17 Na2O 0.10 0.10 0.10 0.02 0.09 K2O 4.77 4.68 4.25 3.97 4.79 P2O5 0.15 0.17 0.15 0.07 0.15 LOI 3.44 3.62 3.83 3.08 3.58 Total 99.80 99.85 99.31 100.24 99.97 A/CNK 2.58 2.77 2.66 3.06 2.70 A/NK 2.71 2.98 2.89 3.20 2.85 Sc 8.04 10.1 8.40 8.57 7.74 V 48.0 60.0 45.0 51.0 48.0 Cr 18.0 22.0 17.0 36.0 16.0 Co 4.63 5.57 5.36 7.12 4.99 Ni 4.62 5.55 7.18 5.81 5.16 Ga 18.9 23.8 18.5 19.7 19.8 Rb 167 202 167 147 173 Sr 27.2 14.0 27.1 52.3 24.0 Y 26.1 35.2 31.9 28.8 32.8 Zr 207 229 201 238 202 Nb 13.2 16.6 12.2 13.9 13.4 Cs 8.70 11.6 12.6 5.03 7.00 Ba 634 539 598 711 554 La 32.4 33.2 28.8 46.0 45.1 Ce 66.4 70.2 60.1 94.6 91.1 Pr 8.29 8.81 7.62 11.8 11.4 Nd 31.3 33.7 28.9 44.4 42.1 Sm 5.89 6.88 5.96 7.97 8.23 Eu 0.84 0.88 0.88 0.88 1.04 Gd 5.43 6.54 5.78 6.94 7.30 Tb 0.91 1.16 1.00 1.08 1.19 Dy 5.39 7.19 6.05 6.04 6.86 Ho 1.11 1.52 1.29 1.25 1.39 Er 3.31 4.58 3.95 3.77 4.10 Tm 0.54 0.72 0.64 0.58 0.63 Yb 3.51 4.73 4.18 3.91 4.12 Lu 0.53 0.74 0.65 0.59 0.61 Hf 7.46 8.40 7.11 8.66 7.28 Ta 1.32 1.60 1.24 1.17 1.40 Pb 2403 2737 3041 1239 1316 Th 16.5 18.0 15.7 13.6 16.1 U 3.41 3.31 2.78 3.48 2.33 -
Barber, A.J., 2000.The Origin of the Woyla Terranes in Sumatra and the Late Mesozoic Evolution of the Sundaland Margin.Journal of Asian Earth Sciences, 18(6):713-738.https://doi.org/10.1016/s1367-9120(00)00024-9 doi: 10.1016/S1367-9120(00)00024-9 Barber, A.J., Crow, M.J., 2009.Structure of Sumatra and Its Implications for the Tectonic Assembly of Southeast Asia and the Destruction of Paleotethys.Island Arc, 18(1):3-20. doi: 10.1111/j.1440-1738.2008.00631.x Blichert-Toft, J., Albarede, F., 1997.The Lu-Hf Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148(1-2):243-258. doi: 10.1016/S0012-821X(97)00040-X Booi, M., van Waveren, I.M., van Konijnenburg-van Cittert, J.H.A., et al., 2008.New Material of Macralethopteris from the Early Permian Jambi Flora (Middle Sumatra, Indonesia) and Its Palaeoecological Implications.Review of Palaeobotany and Palynology 152(3-4):101-112. https://doi.org/10.1016/j.revpalbo.2008.04.009 Brookfield, M.E., 1993.The Himalayan Passive Margin from Precambrian to Cretaceous Times.Sedimentary Geology, 84 (1-4):1-35. https://doi.org/10.1016/0037-0738(93)90042-4 Cai, Z.H., Xu, Z.Q., Duan, X.D., et al., 2013.Early Stage of Early Paleozoic Orogenic Event in Western Yunnan Province, Southeastern Margin of Tibet Plateau.Acta Petrologica Sinica, 29(6):2123-2140(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201306019 Chen, F.K., Li, X.H., Wang, X.L., et al., 2007.Zircon Age and Nd-Hf Isotopic Composition of the Yunnan Tethyan Belt, Southwestern China.International Journal of Earth Sciences, 96:1179-1194. doi: 10.1007/s00531-006-0146-y Chu, N.C., Taylor, R.N., Chavagnac, V., et al., 2002.Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry:An Evaluation of Isobaric Interference Corrections.Journal of Analytical Atomic Spectrometry, 17(12):1567-1574. https://doi.org/10.1039/b206707b Claisse, F., Blanchette, J.S., 2007.Physics and Chemistry of Borate Fusion for X Ray Fluorescence Spertroscopists.East China University of Science and Technology Press, Shanghai(in Chinese). Cui, X.L., Deng, J., Zhang, D., et al., 2017.Chronological and Geochemical Characteristics of the Early Silurian Metamorphic Granites in Tengchong Block, Western Yunnan and Their Implications.Acta Petrologica Sinica, 33(7):2085-2098(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201707008 de Bievre, P., Taylor, P.D.P., 1993.Table of the Isotopic Compositions of the Elements.International Journal of Mass Spectrometry and Ion Processes, 123(2):149-166.https://doi.org/10.1016/0168-1176(93)87009-h doi: 10.1016/0168-1176(93)87009-H Dong, M.L., Dong, G.C., Mo, X.X., et al., 2012.Geochronology and Geochemistry of the Early Palaeozoic Granitoids in Baoshan Block, Western Yunnan and Their Implications.Acta Petrologica Sinica, 28(5):1453-1464(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201205009 Gao, S., Luo, T.C., Zhang, B.R., et al., 1998.Chemical Composition of the Continental Crust as Revealed by Studies in East China.Geochimica et Cosmochimica Acta, 62(11):1959-1975.https://doi.org/10.1016/s0016-7037(98)00121-5 doi: 10.1016/S0016-7037(98)00121-5 Griffin, W.L., Powell, W.J., Pearson, N.J., et al., 2008.GLITTER:Data Reduction Software for Laser Ablation ICP-MS Laser Ablatio-ICP-MS in the Earth Sciences.Mineralogical Association of Canada, Short Curse Series, 40:204-207. http://ci.nii.ac.jp/naid/20001269558 Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269.https://doi.org/10.1016/s0024-4937(02)00082-8 doi: 10.1016/S0024-4937(02)00082-8 Hanson, G.N., 1980.Rare Earth Elements in Petrogenetic Studies of Igneous Systems.Annual Review of Earth and Planetary Sciences, 8(1):371-406. https://doi.org/10.1146/annurev.ea.08.050180.002103 Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012.Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS.Journal of Analytical Atomic Spectrometry, 27(9):1391-1399. doi: 10.1039/c2ja30078h Huang, C.W., Li, H., Lai, C.K., 2019.Genesis of the Binh Do Pb-Zn Deposit in Northern Vietnam:Evidence from H-O-S-Pb Isotope Geochemistry.Journal of Earth Science, 30(4):679-688. doi: 10.1007/s12583-019-0872-2 Ji, W.H., Chen, S.J., Zhao, Z.M., et al., 2009.Discovery of the Cambiran Volcanic Rocks in the Xainza Area, Gangdese Orogenic Belt, Tibet, China and Its Significance.Geological Bulletin of China, 28(9):1350-1354(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200909026 Kang, H., Li, D.P., Chen, Y.L., et al., 2016.Origin and Tectonic Implications of the Early Paleozoic High-Si Granite in the Eastern Baoshan Block, Yunnan.Geoscience, 30(5):1026-1037(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201605008 Li, Z.H., Lin, S.L., Cong, F., et al., 2012.U-Pb Ages of Zircon from Metamorphic Rocks of the Gaoligongshan Group in Western Yunnan and Its Tectonic Significance.Acta Petrologica Sinica, 28(5):1529-1541(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201205015 Lin, S.L., Cong, F., Gao, Y.J., et al., 2012.LA-ICP-MS Zircon U-Pb Age of Gneiss from Gaoligong Mountain Group on the Southeastern Margin of Tengchong Block in Western Yunnan Province.Geological Bulletin of China, 31(2-3):258-263(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202008 Liu, Q.S., Ye, P.S., Wu, Z.H., 2012.SHRIMP Zircon U-Pb Dating and Petrogeochemistry of Ordovician Granite Bodies in the Southern Segment of Gaoligong Mountain, Western Yunnan Province.Geological Bulletin of China, 31(2-3):250-257(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202007 Liu, S., Hu, R.Z., Gao, S., et al., 2009.U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on the Age and Origin of Early Palaeozoic I-Type Granite from the Tengchong-Baoshan Block, Western Yunnan Province, SW China.Journal of Asian Earth Sciences, 36(2-3):168-182.https://doi.org/10.1016/s0016-7037(98)00121-5 doi: 10.1016/j.jseaes.2009.05.004 Ludwig, K.R., 2001.Using Isoplot/EX, Version 2.49: A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronological Center Special Publication, Berkeley, 1-55. Ma, C., Tang, Y.J., Ying, J.F., 2019.Magmatism in Subduction Zones and Growth of Continental Crust.Earth Science, 44(4):1128-1142(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201904006.htm McCarthy, A.J., Jasin, B., Haile, N.S., 2001.Middle Jurassic Radiolarian Chert, Indarung, Padang District, and Its Implications for the Tectonic Evolution of Western Sumatra, Indonesia.Journal of Asian Earth Sciences, 119(1-2):31-44.https://doi.org/10.1016/s1367-9120(00)00009-2 http://www.sciencedirect.com/science/article/pii/S1367912000000092 Metcalfe, I., 1996.Gondwanaland Dispersion, Asian Accretion and Evolution of Eastern Tethys.Journal of the Geological Society of Australia, 43(6):605-623. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/08120099608728282 Metcalfe, I., 2000.The Bentong-Raub Suture Zone.Journal of Asian Earth Sciences, 18(6):691-712.https://doi.org/10.1016/s1367-9120(00)00043-2 doi: 10.1016/S1367-9120(00)00043-2 Miller, C., Thoni, M., Frank, W., et al., 2001.The Early Palaeozoic Magmatic Event in the Northwest Himalaya, India:Source, Tectonic Setting and Age of Emplacement.Geological Magazine, 138(3):237-251.https://doi.org/10.1017/s0016756801005283 doi: 10.1017/S0016756801005283 Qian, X., Wang, Y.J., Feng, Q.L., et al., 2016.Petrogenesis and Tectonic Implication of the Late Triassic Post-Collisional Volcanic Rocks in Chiang Khong, NW Thailand.Lithos, 248-251:418-431. https://doi.org/10.1016/j.lithos.2016.01.024 Scherer, E., Munker, C., Mezger, K., 2001.Calibration of the Lutetium-Hafnium Clock.Science, 293:1766-1766. doi: 10.1126/science.293.5536.1766 Shi, C., Li, R.S., He, S.P., et al., 2010.LA-ICP-MS Zircon U-Pb Dating for Gneissic Garnet-Bearing Biotite Granodiorite in the Yadong Area, Southern Tibet, China and Its Geological Significance.Geological Bulletin of China, 29(12):1745-1753(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201012003 Shi, Y.R., Lawford, A.J., Wu, Z.H., et al., 2016.Age and Origin of Early Paleozoic and Mesozoic Granitoids in Western Yunnan Province, China:Geochemistry, SHRIMP Zircon Ages, and Hf-in-Zircon Isotopic Compositions.Journal of Geology, 24(5):617-630. http://adsabs.harvard.edu/abs/2016JG....124..617S Sláma, J., Kostler, J., Condon, D.J., et al., 2008.Pleŝovice:A New Natural Reference Material for U-Pb and Hf Isotopic Analysis.Chemical Geology, 249(1-2):1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005 Stampfli, G.M., Hochard, C., Vérard, C., et al., 2013.The Formation of Pangea.Tectonophysics, 593:1-19. https://doi.org/10.1016/j.tecto.2013.02.037 Sun, S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19 Sylvester, P.J, 1998.Post-Collisional Strongly Peraluminous Granites.Lithos, 45(1-4):29-44.https://doi.org/10.1016/s0024-4937(98)00024-3 doi: 10.1016/S0024-4937(98)00024-3 Taylor, S.R., McLennan, S.M., 1985.The Continental Crust: Its Composition and Evolution.Oxford Press Blackwell, Oxford. Vervoort, J.D., Blichert-Toft, J., 1999.Evolution of the Depleted Mantle:Hf Isotope Evidence from Juvenile Rocks through Time.Geochimica et Cosmochimica, 63(3-4):553-556.https://doi.org/10.1016/s0016-7037(98)00274-9 http://www.onacademic.com/detail/journal_1000035464940710_94bc.html Wang, Y.J., Yang, T.X., Zhang, Y.Z., et al., 2020.Late Paleozoic Back-Arc Basin in the Indochina Block:Constraints from the Mafic Rocks in the Nan and Luang Prabang Tectonic Zones, Southeast Asia.Journal of Asian Earth Sciences, 195:104333. https://doi.org/10.1016/j.jseaes.2020.104333 Wang, Q., Zhu, D.C., Zhao, Z.D., et al., 2012.Magmatic Zircons from I-, S-and A-Type Granitoids in Tibet:Trace Element Characteristics and Their Application to Detrital Zircon Provenance Study.Journal of Asian Earth Sciences, 53:59-66. doi: 10.1016/j.jseaes.2011.07.027 Wang, Y.J., He, H.Y., Cawood, P.A., et al., 2016.Geochronological, Elemental and Sr-Nd-Hf-O Isotopic Constraints on the Petrogenesis of the Triassic Post-Collisional Granitic Rocks in NW Thailand and Its Paleotethyan Implications.Lithos, 266-267:264-286. https://doi.org/10.1016/j.lithos.2016.09.012 Wang, Y.J., Qian, X., Cawood, P.A., et al., 2018.Closure of the East Paleotethyan Ocean and Amalgamation of the Eastern Cimmerian and Southeast Asia Continental Fragments.Earth-Science Reviews, 186:195-230. https://doi.org/10.1016/j.earscirev.2017.09.013 Wang, Y.J., Xing, X.W., Cawood, P.A., et al., 2013.Petrogenesis of Early Paleozoic Peraluminous Granite in the Sibumasu Block of SW Yunnan and Diachronous Accretionary Orogenesis along the Northern Margin of Gondwana.Lithos, 182-183:67-85. doi: 10.1016/j.lithos.2013.09.010 Watson, E.B., Wark, E.D.A., Thomas, E.J.B., 2006.Crystallization Thermometers for Zircon and Rutile.Contrib Mineral Petrol, 151:413-433. doi: 10.1007/s00410-006-0068-5 Wiedenbeck, M., Alle, P., Corfu, F., et al., 1995.Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses.Geost and Newslett, 19(1):1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x Xie, C.M., Song, Y.H., Wang, M., et al., 2019.Age and Provenance of Sumdo Formation in Central Gangdise, Tibetan Plateau:Detrital Zircon U-Pb Geochronological Evidence.Earth Science, 44(7):2224-2233(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201907003.htm Xing, X.W., Zhang, Y.Z., Wang, Y.J., et al., 2015.Zircon U-Pb Geochronology and Hf Isotopic Composition of the Ordovician Granitic Gneisses in Ximeng Area, West Yunnan Province.Geotectonica et Metallogenia, 39(3):470-480(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201503012 Xiong, C.L., Jia, X.C., Yang, X.J., et al., 2012.LA-ICP-MS Zircon U-Pb Dating of Ordovician Mengmao Monzogranite in Longling Area of Western Yunnan Province and Its Tectonic Setting.Geological Bulletin of China, 31(2-3):277-286(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202010 Xu, Z.Q., Yang, J.S., Liang, F.H., et al., 2005.Pan-African and Early Paleozoic Orogenic Events in the Himalaya Terrane:Inference from SHRIMP U-Pb Zircon Ages.Acta Petrologica Sinica, 21(1):1-12(in Chinese with English abstract). http://www.researchgate.net/publication/283961080_Pan-African_and_Early_Paleozoic_orogenic_events_in_the_Himalaya_terrane_Inference_from_SHRIMP_U-Pb_zircon_ages Yang, X.J., Jia, X.C., Xiong, C.L., et al., 2012.LA-ICP-MS Zircon U-Pb Age of Metamorphic Basic Volcanic Rock in Gongyanghe Group of Southern Gaoligong Mountain, Western Yunnan Province, and Its Geological Significance.Geological Bulletin of China, 31(2-3):264-276(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202009 Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth Planetary Science, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 Zhang, X.R., Chung, S.L., Lai, Y.M., et al., 2018.Detrital Zircons Dismember Sibumasu in East Gondwana.Journal of Geophysical Research:Solid Earth, 123(7):6098-6110.https://doi.org/10.1029/2018jb015780 doi: 10.1029/2018JB015780 Zhang, Y.Z., Wang, Y.J., Srithai, B., et al., 2016.Petrogenesis for the Chiang Dao Permian High-Iron Basalt and Its Implication on the Paleotethyan Ocean in NW Thailand.Journal of Earth Science, 27(3):425-434. https://doi.org/10.1007/s12583-015-0646-4 Zhang, Z.M., Dong, X., Santosh, M., et al., 2012.Petrology and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet:Constraints on the Origin and Evolution of the North-Eastern Margin of the Indian Craton.Gondwana Research, 21(1):123-137. https://doi.org/10.1016/j.gr.2011.02.002 Zhang, Z.M., Wang, J.L., Shen, K., et al., 2008.Paleozoic and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet.Acta Petrologica Sinica, 24(7):1627-1637(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807019 Zhao, G.C., Wang, Y.J., Huang, B.C., et al., 2018.Geological Reconstructions of the East Asian Blocks:From the Break up of Rodinia to the Assembly of Pangea.Earth-Science Reviews, 186:262-286. doi: 10.1016/j.earscirev.2018.10.003 Zhong, D.L., Wu, G.Y., Ji, J.Q., et al., 1998.Discovery of the Ophiolite in Southeastern Yunnan, China.Chinese Science Bulletin, 43:1365-1370. doi: 10.1360/csb1998-43-13-1365 蔡志慧, 许志琴, 段向东, 等, 2013.青藏高原东南缘滇西早古生代早期造山事件.岩石学报, 29(6):2123-2140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201306019 Claisse, F., Blanchette, J.S., 2007.硼酸盐熔融的物理与化学:献给X射线荧光光谱学工作者.上海:华东理工大学出版社. 崔晓琳, 邓军, 张铎, 等, 2017.滇西腾冲地块高黎贡山群早志留世变质花岗岩体的年代学、地球化学特征及意义.岩石学报, 33(7):2085-2098. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201707008 董美玲, 董国臣, 莫宣学, 等, 2012.滇西保山地块早古生代花岗岩类的年代学、地球化学及意义.岩石学报, 28(5):1453-1464. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201205009 计文化, 陈守建, 赵振明, 等, 2009.西藏冈底斯构造带申扎一带寒武系火山岩的发现及其地质意义.地质通报, 28(9):1350-1354. doi: 10.3969/j.issn.1671-2552.2009.09.026 康欢, 李大鹏, 陈岳龙, 等, 2016.云南保山东缘早古生代高Si花岗岩的成因及构造意义.现代地质, 30(5):1026-1037. doi: 10.3969/j.issn.1000-8527.2016.05.008 李再会, 林仕良, 丛峰, 等, 2012.滇西高黎贡山群变质岩的锆石年龄及其构造意义.岩石学报, 28(5):183-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201205015 林仕良, 丛峰, 高永娟, 等, 2012.滇西腾冲地块东南缘高黎贡山群片麻岩LA-ICP-MS锆石U-Pb年龄及其地质意义.地质通报, 31(2-3):258-263. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202008 刘琦胜, 叶培盛, 吴中海, 2012.滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U-Pb测年和地球化学特征.地质通报, 31(2-3):250-257. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202007 马超, 汤艳杰, 英基丰, 2019.俯冲带岩浆作用与大陆地壳生长.地球科学, 44(4):1128-1142. doi: 10.3799/dqkx.2019.026 时超, 李荣社, 何世平, 等, 2010.藏南亚东地区片麻状含石榴子石黑云花岗闪长岩LA-ICP-MS锆石U-Pb测年及其地质意义.地质通报, 29(12):1745-1753. doi: 10.3969/j.issn.1671-2552.2010.12.003 解超明, 宋宇航, 王明, 等, 2019.冈底斯中部松多岩组形成时代及物源:来自碎屑锆石U-Pb年代学证据.地球科学, 44(7):2224-2233. doi: 10.3799/dqkx.2019.024 邢晓婉, 张玉芝, 王岳军, 等, 2015.西盟地区奥陶纪花岗片麻岩的锆石U-Pb年代学、Hf同位素组成特征及其大地构造意义.大地构造与成矿学, 39(3):470-480. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201503012 熊昌利, 贾小川, 杨学俊, 等, 2012.滇西龙陵地区勐冒奥陶纪二长花岗岩LA-ICP-MS锆石U-Pb定年及其构造环境.地质通报, 31(2-3):277-286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202010 许志琴, 杨经绥, 梁凤华, 等, 2005.喜马拉雅地体的泛非-早古生代造山事件年龄记录.岩石学报, 21(1):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200501001 杨学俊, 贾小川, 熊昌利, 等, 2012.滇西高黎贡山南段公养河群变质基性火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义.地质通报, 31(2-3):264-276. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202009 张泽明, 王金丽, 沈昆, 等, 2008.环东冈瓦纳大陆周缘的古生代造山作用:东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据.岩石学报, 24(7):1627-1637. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200807020.htm 期刊类型引用(4)
1. 李慧玲,钱鑫,余小清,Pham Trung Hieu,张菲菲,余永琪,徐畅,王岳军. 越南昆嵩地体三叠纪花岗岩岩石成因及其特提斯构造意义. 地球科学. 2023(04): 1441-1460 . 本站查看
2. 王岳军,卢向红,钱鑫,吴赛男,张玉芝,王洋. 滇西-东南亚原特提斯南支的造山作用. 中国科学:地球科学. 2022(11): 2077-2104 . 百度学术
3. 余小清,钱鑫,卢向红,徐畅,张玉芝,甘成势,王岳军. 西苏门答腊实武牙地区晚三叠世花岗岩锆石年代学及其特提斯构造意义. 地球科学. 2021(08): 2873-2886 . 本站查看
4. 周云,赵永山,杜宇晶,蔡永丰,冯佐海,刘希军,宋宏星. 海南岛西北部早古生代安山岩的识别及其大地构造意义. 地球科学. 2021(11): 3850-3860 . 本站查看
其他类型引用(1)
-
dqkx-45-6-2077-Table1-3.pdf
-