首页 | 本学科首页   官方微博 | 高级检索  
     

基于Worldview-3与Sentinel-1 SAR数据的草原矿区复垦植被生物量反演方法研究
引用本文:刘艳慧,杨晓宇,包妮沙,顾晓薇. 基于Worldview-3与Sentinel-1 SAR数据的草原矿区复垦植被生物量反演方法研究[J]. 地学前缘, 2021, 28(4): 219-228. DOI: 10.13745/j.esf.sf.2020.10.10
作者姓名:刘艳慧  杨晓宇  包妮沙  顾晓薇
作者单位:东北大学 资源与土木工程学院,辽宁 沈阳 110819;中国地震局 第二监测中心,陕西 西安 710000;东北大学 资源与土木工程学院,辽宁 沈阳 110819;东北大学 智慧水利与资源环境科技创新中心,辽宁 沈阳 110819
基金项目:国家自然科学基金联合基金项目(U1903216);辽宁省重点研发计划项目“工业矿区生态修复及资源综合利用研究”(2019JH2/10300051)
摘    要:利用多源遥感数据定量反演矿区复垦植被生物量是高效、动态、大面积监测土地复垦和生态恢复效果的必要手段之一.本文以内蒙古草原露天煤矿为研究区,联合遥感光学与雷达数据各自的优势,探索基于Worldview-3(WV-3)与Sentinel-1 SAR数据的矿区复垦植被生物量反演方法,选择主成分-小波变换(W-PCA)算法对W...

关 键 词:草原矿区  复垦植被  Worldview-3  Sentinel-1 SAR  数据融合  生物量反演
收稿时间:2020-09-29

Estimating biomass of reclaimed vegetation in prairie mining area: Inversion method based on Worldview-3 and Sentinel-1 SAR data
LIU Yanhui,YANG Xiaoyu,BAO Nisha,GU Xiaowei. Estimating biomass of reclaimed vegetation in prairie mining area: Inversion method based on Worldview-3 and Sentinel-1 SAR data[J]. Earth Science Frontiers, 2021, 28(4): 219-228. DOI: 10.13745/j.esf.sf.2020.10.10
Authors:LIU Yanhui  YANG Xiaoyu  BAO Nisha  GU Xiaowei
Affiliation:1. College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China2. Second Monitoring Center, China Earthquake Administration, Xi’an 710000, China3. Science and Technology Innovation Center of Smart Water and Resource Environment, Northeastern University, Shenyang 110819, China
Abstract:Quantitative inversion of reclaimed vegetation biomass in prairie mining area based on the remote sensing technology is the basis of dynamic monitoring and evaluation of mining ecological environment. In this research, focussing on the reclaimed vegetation in the grassland open-pit coal mine in Inner Mongolia, we combine the advantages of optical and radar remote sensing to explore the inversion method for biomass estimation based on Worldview-3 and Sentinel-1 SAR data. The principal component-wavelet transform algorithm was selected for data fusion. We revealed the correlation between parameters such as band reflectivity, vegetation index, backscatter coefficient or texture feature and biomass, established multivariate biomass inversion models, and analyzed the spatial uncertainty of different biomass models. The results are as follows: (1) After image fusion using W-PCA method, both data entropy and average gradient of the fusion data were significantly improved, and the fused 8th band (NIR2) had the highest correlation coefficient, the lowest spectral distortion, and the highest spectral fidelity. (2) Correlation analysis revealed a significant positive correlation between biomass and EVI, NDVI, VH polarization scattering coefficient, VH mean texture or the 8th band after fusion. Compared with a single variable, using the joint variables, NDVI of WV-3 and VH mean texture of Sentinel-1, it achieved the highest model accuracy (R2=0.8340, RMSE=16.4646 g/m2, Ac=81.52%), while the 8th band after fusion gave the highest verification accuracy (R2=0.7983, RMSE=22.8283 g/m2, Ac=74.64%). (3) According to the residual uncertainty analysis of different models, the Sentinel-1 variables are more prone to overestimation and saturation, whereas the joint variables can achieve complementary advantages. Using fusion data significantly improved the biomass overestimation for biomass below 40 g/m2 and saturation for biomass greater than 100 g/m2, reducing the model uncertainty by 2.42-9.68 g/m2 on average. It can be seen that the combination of optical and microwave cooperative remote sensing can effectively improve the estimation accuracy of vegetation biomass, thereby providing effective data support for fine monitoring of reclaimed vegetation in mining areas.
Keywords:prairie mining area  reclaimed vegetation  Worldview-3  Sentinel-1 SAR  data fusion  biomass inversion  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《地学前缘》浏览原始摘要信息
点击此处可从《地学前缘》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号