1994-2014年南极沿岸验潮站海平面绝对变化确定与分析

柯灝, 李斐, 张胜凯, 马超, 王爱学. 1994-2014年南极沿岸验潮站海平面绝对变化确定与分析[J]. 地球物理学报, 2016, 59(9): 3202-3210, doi: 10.6038/cjg20160906
引用本文: 柯灝, 李斐, 张胜凯, 马超, 王爱学. 1994-2014年南极沿岸验潮站海平面绝对变化确定与分析[J]. 地球物理学报, 2016, 59(9): 3202-3210, doi: 10.6038/cjg20160906
KE Hao, LI Fei, ZHANG Sheng-Kai, MA Chao, WANG Ai-Xue. The determination of absolute sea level changes of the Antarctic coast tidal gauges from 1994 to 2014 and its analysis[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(9): 3202-3210, doi: 10.6038/cjg20160906
Citation: KE Hao, LI Fei, ZHANG Sheng-Kai, MA Chao, WANG Ai-Xue. The determination of absolute sea level changes of the Antarctic coast tidal gauges from 1994 to 2014 and its analysis[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(9): 3202-3210, doi: 10.6038/cjg20160906

1994-2014年南极沿岸验潮站海平面绝对变化确定与分析

详细信息
    作者简介:

    柯灝,男,1984年生,讲师,博士,现主要从事海洋测绘、极地海平面变化、潮汐潮流分析研究.E-mail:kehao1984@whu.edu.cn

    通讯作者: 张胜凯,男,1977年生,副教授,现主要从事极地大地测量学与冰川动力学研究.E-mail:zskai@whu.edu.cn
  • 中图分类号: P228

The determination of absolute sea level changes of the Antarctic coast tidal gauges from 1994 to 2014 and its analysis

More Information
  • 鉴于卫星测高技术在南极周边海域会受到海面浮冰影响,且在利用测高序列分析海平面周期性动态变化时还会受到潮汐周期混叠效应的影响,为此,本文开展了基于GPS和验潮数据联合的南极大陆附近海域从1994-2014年间海平面的绝对变化研究.研究结果显示:在围绕南极大陆及附近海域的15个验潮站中,海平面绝对变化速度最大的是Diego Ramirez验潮站,达到11.10±0.04 mm·a-1;在西南极南极半岛的德雷克海峡,海平面变化最为活跃,变化均值在8.31±0.05 mm·a-1;在东南极,从Syowa站依次到Casey站,海平面的绝对变化速度相对平稳,四个潮位站海平面变化均值为3.35±0.04 mm·a-1;在罗斯冰架右下侧的罗斯岛附近,由于冰川崩解入海导致Scott Base站处的海平面上升速度较快,达到了9.61±0.07 mm·a-1.综合15个验潮站计算结果可得南极半岛德雷克海峡和罗斯岛附近海域,海平面绝对变化速度要高于同期南大洋海平面绝对变化速度,而东南极4个潮位站海平面绝对变化均值则与其相当.这也进一步反映了南极不同海域间海平面变化的差异性,相比较于对南大洋海平面变化的一个整体研究,分区研究海平面变化更具针对性,能更好地了解南极不同区域冰盖、冰架崩解和消融的情况.
  • 加载中
  • [1]

    Allison I, Colgan W, King M, et al. 2015. Ice sheets, glaciers, and sea level.//Snow and Ice-Related Hazards, Risks and Disasters. San Diego:Academic Press, 713-747.

    [2]

    Bao J Y, Xu J. 2013. Tide Analysis from Altimeter Data and the Establishment and Application of Tide Model (in Chinese). Beijing:Surveying and Mapping Press.

    [3]

    Bingley R, Dodson A, Penna N, et al. 2001. Monitoring the vertical land movement component of changes in mean sea level using GPS:Results from tide gauges in the UK. Journal of Geospatial Engineering, 3(1):9-20.

    [4]

    Bouin M, Vigny C. 2000. New constraints on Antarctic plate motion and deformation from GPS data. J. Geophys. Res., 105(B12):28279-28293.

    [5]

    Bouin M N, Wöppelmann G. 2010. Land motion estimates from GPS at tide gauges:a geophysical evaluation. Geophysical Journal International, 180(1):193-209.

    [6]

    Dietrich R, Dach R, Engelhardt G, et al. 2001. ITRF coordinates and plate velocities from repeated GPS campaigns in Antarctica-an analysis based on different individual solutions. Journal of Geodesy, 74(11-12):756-766.

    [7]

    Herring T A. 2003. GLOBK:Global Kalman filter VLBI and GPSanalysis program (version4.1). Cambridge, MA, USA:MassachusettsInstitute of Technology.

    [8]

    Huang J F. 2013. Sea Level Change and its Dynamic Mechanism in the Southern Ocean[Ph.D.thesis]. Wuhan:Wuhan University, 2013.

    [9]

    IPCC. 2007. Climate Change 2007-The Physical Science Basis:Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press.

    [10]

    Jiang W P, E D C, Zhan B W, et al. 2009. New model of Antarctic plate motion and its analysis. Chinese Journal of Geophysics (in Chinese), 52(1):41-49.

    [11]

    Jiao W H, Wei Z Q, Guo H R, et al. 2004. Determination of the absolute rate of sea level by using GPS reference station and tide gauge data. Geomatics and Information Science of Wuhan University (in Chinese), 29(10):901-904.

    [12]

    King R W, Bock Y. 2003. Documentation for the GAMIT Analysis Software release 10.1. Cambridge, MA, USA:Massachusetts Institute of Technology.

    [13]

    Liu J P, Curry J A, Martinson D G. 2004. Interpretation of recent Antarctic sea ice variability. Geophysical Research Letters, 31(2):L02205.

    [14]

    Mazzotti S, Lambert A, Courtier N, et al. 2007. Crustal uplift and sea level rise in northern Cascadia from GPS, absolute gravity, and tide gauge data. Geophysical Research Letters, 34(15):L15306.

    [15]

    Rye C D, Naveira Garabato A C, Holland P R, et al. 2014. Rapid sea-level rise along the Antarctic margins in response to increased glacial discharge. Nature Geoscience, 7(10):732-735.

    [16]

    Scheuchl B, Mouginot J, Rignot E. 2012. Ice velocity changes in the Ross and Ronne sectors observed using satellite radar data from 1997 and 2009. The Cryosphere, 6(5):1019-1030.

    [17]

    Schöne T, Schön N, Thaller D. 2009. IGS Tide Gauge Benchmark Monitoring Pilot Project(TIGA):scientific benefits. Journal of Geodesy, 83(3):249-261.

    [18]

    Wen J H. 2000. International study on Antarctic ice sheet and sea level change:A review. Advances in Earth Sciences, 15(5):586-591.

    [19]

    暴景阳, 许军. 2013. 卫星测高数据的潮汐提取与建模应用. 北京:测绘出版社.

    [20]

    黄继锋. 2013. 南大洋海平面变化及其动态机制研究[博士论文]. 武汉:武汉大学.

    [21]

    姜卫平, 鄂栋臣, 詹必伟等. 2009. 南极板块运动新模型的确定与分析. 地球物理学报, 52(1):41-49.

    [22]

    焦文海, 魏子卿, 郭海荣等. 2004. 联合GPS基准站和验潮站数据确定海平面绝对变化. 武汉大学学报:信息科学版, 29(10):901-904.

  • 加载中
计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2015-06-04
修回日期:  2016-07-15
上线日期:  2016-09-05

目录