全波形反演在缝洞型储层速度建模中的应用

崔永福, 彭更新, 吴国忱, 尚帅, 郭念民, 赵锐锐. 全波形反演在缝洞型储层速度建模中的应用[J]. 地球物理学报, 2016, 59(7): 2713-2725, doi: 10.6038/cjg20160734
引用本文: 崔永福, 彭更新, 吴国忱, 尚帅, 郭念民, 赵锐锐. 全波形反演在缝洞型储层速度建模中的应用[J]. 地球物理学报, 2016, 59(7): 2713-2725, doi: 10.6038/cjg20160734
CUI Yong-Fu, PENG Geng-Xin, WU Guo-Chen, SHANG Shuai, GUO Nian-Min, ZHAO Rui-Rui. Application of full waveform inversion velocity model-building technology for the fractured-vuggy reservoir[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(7): 2713-2725, doi: 10.6038/cjg20160734
Citation: CUI Yong-Fu, PENG Geng-Xin, WU Guo-Chen, SHANG Shuai, GUO Nian-Min, ZHAO Rui-Rui. Application of full waveform inversion velocity model-building technology for the fractured-vuggy reservoir[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(7): 2713-2725, doi: 10.6038/cjg20160734

全波形反演在缝洞型储层速度建模中的应用

详细信息
    作者简介:

    崔永福,1978年生,男,内蒙古宁城县人,工程师,中国石油大学(华东)在读博士生,现主要从事石油物探方面的研究工作.E-mail:cuiyongfu-tlm@petrochina.com.cn

  • 中图分类号: P631

Application of full waveform inversion velocity model-building technology for the fractured-vuggy reservoir

  • 速度是地震偏移成像准确与否的关键所在.全波形反演综合利用地震波场运动学和动力学信息,能够得到相比传统速度建模方法更高频的成分.全波形反演的理论比较成熟,但实际应用成功的例子相对较少,特别是对于陆上地震资料.塔里木盆地地震地质条件复杂,为了实现缝洞型储层的准确成像,本文开展了针对目标靶区的全波形反演精细速度建场研究.采用一种时间域分层多尺度全波形反演流程:首先通过层析成像建立初始速度模型;其次利用折射波反演浅层速度模型;最后利用反射波反演中深层速度模型.偏移成像结果表明基于全波形反演的速度建模技术能有效改善火成岩下伏构造的成像精度,显示了全波形反演在常规陆上采集资料的应用潜力.
  • 加载中
  • [1]

    Bunks C, Saleck F M, Zaleski S, et al. 1995. Multiscale seismic waveform inversion. Geophysics, 60(5): 1457-1473.

    [2]

    Cao S H, Chen J B. 2014. Studies on complex frequencies in frequency domain full waveform inversion. Chinese Journal of Geophysics (in Chinese), 57(7): 2302-2313, doi: 10.6038/cjg20140724.

    [3]

    Danecek P, Seriani G. 2008. An efficient parallel Chebyshev pseudo-spectral method for large scale 3D seismic forward modelling.//70th EAGE Conference & Exhibition. SPE, EAGE.

    [4]

    Dong L Q, Li Z C, Wang D Y, et al. 2011. Ground-roll suppression based on the second generation Curvelet transform. Oil Geophysical Prospecting (in Chinese), 46(6): 897-904.

    [5]

    图13 不同速度模型的PSDM成像对比

    [6]

    (a) 层析成像速度PSDM结果; (b) 波形反演速度的PSDM结果.

    [7]

    Fig.13 PSDM results with tomography velocity (a) and FWI velocity (b)

    [8]

    图14 不同速度模型的PSDM 7600 m深度切片对比

    [9]

    (a) 层析成像速度PSDM深度切片; (b) 波形反演速度的PSDM深度切片.

    [10]

    Fig.14 Depth slice (7600 m) of PSDM results with tomography velocity (a) and FWI velocity (b)

    [11]

    图15 简化的速度模型(a)及对应的叠前深度偏移结果(b)

    [12]

    Fig.15 Simplified velocity model (a) and PSDM result with this velocity (b)

    [13]

    图16 平滑速度模型及其对应的PSDM剖面

    [14]

    (a) 将火成岩区域进行1000 m平滑后的速度模型; (b) 1000 m平滑速度模型对应的PSDM剖面;

    [15]

    (c) 将火成岩区域进行3000 m平滑后的速度模型; (d) 3000 m平滑速度模型对应的PSDM剖面.

    [16]

    Fig.16 Smooth velocity model and PSDM results

    [17]

    (a) Velocity model with 1000 m local smoothing at volcano rock area; (b) PSDM result with velocity as shown in Fig.16a;

    [18]

    (c) Velocity model with 3000 m local smoothing at volcano rock area; (d) PSDM result with velocity as shown in Fig.16c.

    [19]

    Fu L Y, Xiao Y J, Sun J W, et al. 2013. Seismic imaging studies of complex high and steep structures in Kuqa depression. Chinese Journal of Geophysics (in Chinese), 56(6): 1985-2001, doi: 10.6038/cjg20130620.

    [20]

    Gauthier O, Virieux J, Tarantola A. 1986. Two-dimensional nonlinear inversion of seismic waveform: numerical results. Geophysics, 51(7): 1387-1403.

    [21]

    Han M. 2014. Methods and application of full waveform inversion for abyssal seismic data[Ph. D. thesis] (in Chinese). Changchun: Jilin University.

    [22]

    Hollander Y, Kosloff D, Koren Z, et al. 2012. Seismic data interpolation by orthogonal matching pursuit.//74th EAGE Conference & Exhibition. SPE, EAGE.

    [23]

    Hu G H, Jia C M, Xia H R, et al. 2013. Implementation and validation of 3D acoustic full waveform inversion. Geophysical Prospecting for Petroleum (in Chinese), 52(4): 417-425.

    [24]

    Levander A R. 1988. Fourth-order finite-difference P-SV seismogram. Geophysics, 53(11): 1425-1436.

    [25]

    Liu Y Z, Xie C, Yang J Z. 2014. Gaussian beam first-arrival waveform inversion based on Born wavepath. Chinese Journal of Geophysics (in Chinese), 57(9): 2900-2909, doi: 10.6038/cjg20140915.

    [26]

    Marfurt K J. 1984. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics, 49(5): 533-549.

    [27]

    Mora P. 1987. Nonlinear two-dimensional elastic inversion of multi-offset seismic data. Geophysics, 52(9): 1211-1228.

    [28]

    Operto S, Virieux J, Amestoy P, et al. 2007. 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: a feasibility study. Geophysics, 72(5): SM195-SM211.

    [29]

    Plessix R é, Baeten G, de Maag J, et al. 2012. Full waveform inversion and distance separated simultaneous sweeping: a study with a land seismic data set. Geophysical Prospecting, 60(4): 733-747.

    [30]

    Pratt R G, Goulty N R. 1991. Combining wave-equation imaging with traveltime tomography to form high-resolution images from crosshole data. Geophysics, 56(2): 208-224.

    [31]

    Prieux V, Operto S, Brossier R, et al. 2010. Application of 2D acoustic frequency-domain full-waveform inversion to OBC wide-aperture data from the Valhall field.//SEG Technical Program Expanded Abstracts, Denver, Colorado: SEG, 920-924.

    [32]

    Ratcliffe A, Win C, Vinje V, et al. 2011. Full waveform inversion: a North Sea OBS case study.//Proceedings of the 81st Annual International Meeting. SEG, 2384-2388.

    [33]

    Sirgue L, Pratt R G. 2004. Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies. Geophysics, 69(1): 231-248.

    [34]

    Sirgue L, Barkved O I, Dellinger J, et al. 2010. Full waveform inversion: the next leap forward in imaging at Valhall. First Break, 28(4): 65-70.

    [35]

    Song Z M, Williamson P R, Pratt R G. 1995. Frequency-domain acoustic-wave modeling and inversion of crosshole data: Part II-Inversion method, synthetic experiments and real-data results. Geophysics, 60(3): 796-809.

    [36]

    Strobbia C L, Laake A, Vermeer P L, et al. 2009. Surface waves-use them then lose them.//71th EAGE Conference & Exhibition. Amsterdam, The Newtherlands.

    [37]

    Takougang E M T, Calvert A J. 2011. Application of waveform tomography to marine seismic reflection data from the Queen Charlotte Basin of western Canada. Geophysics, 76(2): B55-B70.

    [38]

    Tarantola A. 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8): 1259-1266.

    [39]

    Tnaer M T, Koehler F. 1981. Surface consistent corrections. Geophysics, 46(1): 12-22.

    [40]

    Vigh D, Kapoor J, Li H Y. 2011. Full-waveform inversion application in different geological settings.//SEG Technical Program Expanded Abstracts. SEG, 2374-2378.

    [41]

    Virieux J. 1984. SH-wave propagation in heterogeneous media, velocity-stress finite-difference method. Geophysics, 49(11): 1933-1942.

    [42]

    Wang W, Han B, Tang J P. 2013. Regularization method with sparsity constraints for seismic waveform inversion. Chinese Journal of Geophysics (in Chinese), 56(1): 289-297, doi: 10.6038/cjg20130130.

    [43]

    Wei Z F, Gao H W, Zhang J F. 2014. Time-domain full waveform inversion based on an irregular-grid acoustic modeling method. Chinese Journal of Geophysics (in Chinese), 57(2): 586-594, doi: 10.6038/cjg20140222.

    [44]

    Wu R S. 2003. Wave propagation, scattering and imaging using dual-domain one-way and one-return propagators. Pure and Applied Geophysics, 160(3-4): 509-539.

    [45]

    Yang Q Y, Hu G H, Wang L X. 2014. Research status and development trend of full waveform inversion. Geophysical Prospecting for Petroleum (in Chinese), 53(1): 77-83.

    [46]

    附中文参考文献

    [47]

    曹书红, 陈景波. 2014. 频率域全波形反演中关于复频率的研究. 地球物理学报, 57(7): 2302-2313, doi: 10.6038/cjg20140724.

    [48]

    董烈乾, 李振春, 王德营等. 2011. 第二代Curvelet变换压制面波方法. 石油地球物理勘探, 46(6): 897-904.

    [49]

    符力耘, 肖又军, 孙伟家等. 2013. 库车坳陷复杂高陡构造地震成像研究. 地球物理学报, 56(6): 1985-2001, doi: 10.6038/cjg20130620.

    [50]

    韩淼. 2014. 深水区地震全波形反演策略与应用[博士论文]. 长春: 吉林大学.

    [51]

    胡光辉, 贾春梅, 夏洪瑞等. 2013. 三维声波全波形反演的实现与验证. 石油物探, 52(4): 417-425.

    [52]

    刘玉柱, 谢春, 杨积忠. 2014. 基于Born波路径的高斯束初至波波形反演. 地球物理学报, 57(9): 2900-2909, doi: 10.6038/cjg20140915.

    [53]

    王薇, 韩波, 唐锦萍. 2013. 地震波形反演的稀疏约束正则化方法. 地球物理学报, 56(1): 289-297, doi: 10.6038/cjg20130130.

    [54]

    魏哲枫, 高红伟, 张剑锋. 2014. 基于非规则网格声波正演的时间域全波形反演. 地球物理学报, 57(2): 586-594, doi: 10.6038/cjg20140222.

    [55]

    杨勤勇, 胡光辉, 王立歆. 2014. 全波形反演研究现状及发展趋势. 石油物探, 53(1): 77-83.

  • 加载中
计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2015-06-23
修回日期:  2016-01-12
上线日期:  2016-07-05

目录