首页 | 本学科首页   官方微博 | 高级检索  
     

顾及电离层变化的层析反演新算法
引用本文:霍星亮, 袁运斌, 欧吉坤, 李莹, 李子申, 王宁波. 顾及电离层变化的层析反演新算法[J]. 地球物理学报, 2016, 59(7): 2393-2401, doi: 10.6038/cjg20160706
作者姓名:霍星亮  袁运斌  欧吉坤  李莹  李子申  王宁波
作者单位:1. 中国科学院测量与地球物理研究所, 大地测量与地球动力学国家重点实验室, 武汉 430077; 2. 中国科学院光电研究院, 北京 100094
基金项目:国家自然科学基金(41231064,41321063,41104012,41304034,41574033,41574015)、国家重点基础研究发展计划(973计划)项目课题(2012CB825604)、中国科学院青年创新促进会(2014310)资助.
摘    要:区别于以往GPS电离层层析研究主要关注迭代模型的思路,本文从两方面入手提高GPS电离层层析迭代算法的反演精度:一方面,顾及传统电离层层析迭代模型仅与对电子密度误差起放大作用的GPS射线截距权重相关的不足,提出考虑层析像素格网中的电子密度对GPS TEC的贡献建立新的迭代模型,在不同电子密度像素格网内重新分配GPS TEC 实测值与其反演值之间的差距;另一方面,顾及电离层层析迭代算法中松弛因子对反演结果的影响,提出考虑电子密度变化构造新的松弛因子,抑制传播噪声对电子密度反演精度的影响.实验结果显示,相对于传统代数重构算法(ART),新方法反演的电离层电子密度剖面更接近于电离层测高仪观测的电子密度剖面,提高了电子密度反演精度.

关 键 词:GPS   电离层层析   迭代算法   电子密度
收稿时间:2015-09-01
修稿时间:2016-01-19

A new ionospheric tomographic algorithm taking into account the variation of the ionosphere
HUO Xing-Liang, YUAN Yun-Bin, OU Ji-Kun, LI Ying, LI Zi-Shen, WANG Ning-Bo. A new ionospheric tomographic algorithm taking into account the variation of the ionosphere[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(7): 2393-2401, doi: 10.6038/cjg20160706
Authors:HUO Xing-Liang  YUAN Yun-Bin  OU Ji-Kun  LI Ying  LI Zi-Shen  WANG Ning-Bo
Affiliation:1. State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China; 2. Academy of Opto-Electronic, Chinese Academy of Sciences, Beijing 100094, China
Abstract:GPS-based ionospheric tomography technique can be used to reconstruct the large-scale ionospheric structure of three-dimensional electron densities, and has become an important ionospheric sounding tool. Current researches on GPS-based ionospheric tomography iterative methods pay more attention to the iterative models, and we will improve the iterative algorithm of tomography from two aspects.#br#On the one hand, for the conventional GPS iterative algorithms of ionospheric tomography, the modification to a density in the assigned voxel is only proportional to the intersection length of GPS ray with each ray-voxel. But a voxel's contribution to TEC includes the geometry contribution of the intersection lengths of the ray-voxel, and the contribution of the electron density of that voxel. Furthermore, the inversion error of electron densities retrieved from GPS tomographic technique is the dominant source of the discrepancy between the real measured and calculated TEC, and the intersection length only has an amplification effect on the error of electron density. Thus, it is not reasonable for the current algorithms to determine the assigned value of TEC difference in a particular voxel only by the intersection length with that voxel, while the contribution of the electron density is ignored. Therefore, a new iterative model used for the GPS ionospheric tomography will be developed to redistribute the discrepancy between GPS TEC and the calculated TEC among the ray-voxels according to the voxel's contribution to TEC instead of the length of the ray-voxel intersection. On the other hand, in conventional tomographic techniques, the relaxation factor is always set to a fixed constant, but ignoring the effects of the relaxation factor which controls the tradeoff between GPS ionospheric tomography inversion accuracy and the smoothness of the electron density. This work will propose a new method to appropriately choose the relaxation factor accounting the variations of ionosphere for GPS ionospheric tomography. Finally, we will establish a new tomographic algorithm of imaging the ionosphere based on the GPS observations.#br#The experimental results shows that the reconstructed electron densities derived from the new ionospheric algorithm are closer with those from the ionosonde measurements, especially at the bottomside profile of the ionosphere up to the peak of the F2 layer. In addition, the quantitative results also show that the reconstruction errors and RMS values of the ionospheric densities derived from the new algorithm are smaller than those derived from the Algebraic Reconstruction Technique (ART). The inversion accuracy of ionospheric electron densities derived from the new tomographic algorithm are effectively improved in comparison with those retrieved from the ART algorithm.
Keywords:GPS  Ionospheric tomography  Iterative reconstruction algorithm  Electron density
本文献已被 CNKI 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号