武汉九峰站地下水变化对重力场观测的影响

贺前钱, 罗少聪, 孙和平, 徐建桥, 陈晓东. 武汉九峰站地下水变化对重力场观测的影响[J]. 地球物理学报, 2016, 59(8): 2765-2772, doi: 10.6038/cjg20160804
引用本文: 贺前钱, 罗少聪, 孙和平, 徐建桥, 陈晓东. 武汉九峰站地下水变化对重力场观测的影响[J]. 地球物理学报, 2016, 59(8): 2765-2772, doi: 10.6038/cjg20160804
HE Qian-Qian, LUO Shao-Cong, SUN He-Ping, XU Jian-Qiao, CHEN Xiao-Dong. The influence of groundwater changes on gravity observations at Jiufeng station in Wuhan[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(8): 2765-2772, doi: 10.6038/cjg20160804
Citation: HE Qian-Qian, LUO Shao-Cong, SUN He-Ping, XU Jian-Qiao, CHEN Xiao-Dong. The influence of groundwater changes on gravity observations at Jiufeng station in Wuhan[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(8): 2765-2772, doi: 10.6038/cjg20160804

武汉九峰站地下水变化对重力场观测的影响

详细信息
    作者简介:

    贺前钱,1988年生,博士研究生,主要从事地下水重力效应、地球重力场资料分析及应用研究.E-mail:hqq@asch.whigg.ac.cn

  • 中图分类号: P312

The influence of groundwater changes on gravity observations at Jiufeng station in Wuhan

  • 本文从地下水渗透过程的物理机制出发,采用一维水动力学模拟,利用井水位和降雨数据模拟计算了武汉九峰站附近的土壤含水率变化,在此基础上估计了地下水变化导致的重力效应.其峰对峰变化幅度达到15.94μGal,说明当利用精密重力观测研究长周期效应时实施台站地下水改正的必要性;频域分析表明,地下水重力效应在周年频段上的振幅最大,说明地下水变化对重力的最大影响来自季节性变化.对比模拟计算的地下水重力效应和经过潮汐、大气、极移等改正后的高精度超导重力残差(峰对峰变化幅度为12.73μGal),发现两者在时域和频域均具有良好的一致性,说明超导重力残差信号主要来源于局部地区地下水的变化,同时也验证了本文使用的水动力学模拟方法的正确性.
  • 加载中
  • [1]

    Abe M, Takemoto S, Fukuda Y, et al. 2006. Hydrological effects on the superconducting gravimeter observation in Bandung. J. Geodyn., 41(1-3):288-295.

    [2]

    Agnew D C. 1997. NLOADF:A program for computing ocean-tide loading. J. Geophys. Res., 102(B3):5109-5110.

    [3]

    Bear J. 1979. Hydraulics of Groundwater. New York:McGraw-Hill International Book Co.

    [4]

    Boy J-P, Gegout P, Hinderer J. 2002. Reduction of surface gravity data from global atmospheric pressure loading. Geophys. J. Int., 149(2):534-545.

    [5]

    Chen X D. 2003. Preprocessing and Analytical Results of the Tidal Gravity Observations Recorded with a Superconducting Gravimeter at Jiufeng Station, Wuhan[Master's thesis] (in Chinese). Wuhan:Institute of Geodesy and Geophysics, Chinese Academy of Sciences.

    [6]

    Crossley D J, Xu S, van Dam T. 1998. Comprehensive analysis of 2 years of SG Data from Table Mountain, Colorado.//Proc. 13th Int. Symp. Earth Tides. Obs. Royal Belgique, Brussels, 659-668.

    [7]

    Crossley D, Hinderer J, Casula G, et al. 1999. Network of superconducting gravimeters benefits a number of disciplines. EOS, Transactions American Geophysical Union, 80(11):121-126.

    [8]

    Farrell W E. 1972. Deformation of the Earth by surface loads. Rev. Geophys., 10(3):761-797.

    [9]

    Francis O, Van Camp M, van Dam T, et al. 2004. Indication of the uplift of the Ardenne in long-term gravity variations in Membach (Belgium). Geophys. J. Int., 158(1):346-352.

    [10]

    Harnisch G, Harnisch M. 2006. Hydrological influences in long gravimetric data series. J. Geodyn., 41(1-3):276-287.

    [11]

    Hasan S, Troch P A, Boll J, et al. 2006. Modeling the hydrological effect on local gravity at Moxa, Germany. J. Hydrometeorol., 7(3):346-354, doi:10.1175/jhm488.1.

    [12]

    Hector B, Séguis L, Hinderer J, et al. 2013. Gravity effect of water storage changes in a weathered hard-rock aquifer in West Africa:results from joint absolute gravity, hydrological monitoring and geophysical prospection. Geophys. J. Int., 194(2):737-750, doi:10.1093/gji/ggt146.

    [13]

    Hinderer J, Crossley D. 2000. Time variations in gravity and inferences on the earth's structure and dynamics. Surv. Geophys., 21(1):1-45, doi:10.1023/A:1006782528443.

    [14]

    Kazama T, Okubo S. 2009. Hydrological modeling of groundwater disturbances to observed gravity:Theory and application to Asama Volcano, Central Japan. J. Geophys. Res., 114(B8), doi:10.1029/2009jb006391.

    [15]

    Kazama T, Tamura Y, Asari K, et al. 2012. Gravity changes associated with variations in local land-water distributions:Observations and hydrological modeling at Isawa Fan, northern Japan. Earth Planets Space, 64(4):309-331, doi:10.5047/eps.2011.11.003.

    [16]

    Knudsen P, Andersen O. 2002. Correcting GRACE gravity fields for ocean tide effects. Geophys. Res. Lett., 29(8):19-1-19-4, doi:10.1029/2001gl014005.

    [17]

    Lambert A, Courtier N, Sasagawa G S, et al. 2001. New constraints on laurentide postglacial rebound from absolute gravity measurements. Geophys. Res. Lett., 28(10):2109-2112.

    [18]

    Leirião S, He X, Christiansen L, et al. 2009. Calculation of the temporal gravity variation from spatially variable water storage change in soils and aquifers. J. Hydrol., 365(3-4):302-309, doi:10.1016/j.jhydrol.2008.11.040.

    [19]

    Luo S C, Sun H P, Xu J Q. 2005. Theoretical computation of the barometric pressure effects on deformation, gravity and tilt. Chinese J. Geophys. (in Chinese), 48(6):1288-1294.

    [20]

    Pool D R. 2008. The utility of gravity and water-level monitoring at alluvial aquifer wells in southern Arizona. Geophysics, 73(6):WA49-WA59, doi:10.1190/1.2980395.

    [21]

    Sato T, Boy J P, Tamura Y, et al. 2006. Gravity tide and seasonal gravity variation at Ny-Ålesund, Svalbard in Arctic. J. Geodyn., 41(1-3):234-241.

    [22]

    Sato T, Miura S, Sun W K, et al. 2012. Gravity and uplift rates observed in southeast Alaska and their comparison with GIA model predictions. J. Geophys. Res., 117(B1):B01401.

    [23]

    Shiomi S. 2008. Proposal for a geophysical search for dilatonic waves. Phys. Rev. D, 78(4):042001.

    [24]

    Steffen H, Gitlein O, Denker H, et al. 2009. Present rate of uplift in Fennoscandia from GRACE and absolute gravimetry. Tectonophysics, 474(1-2):69-77.

    [25]

    Sun H P. 1997. The atmospheric gravity Green's functions. Chinese Science Bulletin,42(20):1712-1719.

    [26]

    Sun H P, Xu J Q, Ducarme B. 2004. Detection of the translational oscillations of the Earth's solid Inner core based on the international superconducting gravimeter observations. Chinese Sci. Bull. (in Chinese), 49(11):1650-1676.

    [27]

    Sun H P, Hsu H Z, Zhou J C, et a1.2005. Latest observation results from superconducting gravimeter at station Wuhan and investigation of the ocean tide models. Chinese J. Geophys. (in Chinese), 48(2):299-307.

    [28]

    Van Camp M, Vauterin P. 2005. Tsoft:graphical and interactive software for the analysis of time series and Earth tides. Comput. Geosci., 31(5):631-640.

    [29]

    Van Camp M, Vanclooster M, Crommen O, et al. 2006. Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations. J. Geophys. Res., 111(B10):B10403, doi:10.1029/2006jb004405.

    [30]

    Van Camp M, Francis O. 2007. Is the instrumental drift of superconducting gravimeters a linear or exponential function of time? J. Geodesy, 81(5):337-344.

    [31]

    Wenzel H G. 1996. The nanogal software:earth tide data processing pakage ETERNA 3.30. Bull. Inf. Marées Terrestres, 124:9425-9439.

    [32]

    Wuhan water resources bulletin of 2011. (2012 August 15). Retrieved November 23, 2015, from:http://www.whwater.gov.cn/water/szyt/651.jhtml.

    [33]

    Xu H Z, Sun H P, Xu J Q, et al. 2000. International tidal gravity reference values at Wuhan station. Science in China Series D:Earth Sciences, 43(1):77-83.

    [34]

    Xu J Q, Sun H P, Luo S C. 2002. Study of the Earth's free core nutation by tidal gravity data recorded with international superconducting gravimeters. Science in China Series D:Earth Sciences, 45(4):337-347.

    [35]

    Xu J Q, Zhou J C, Luo S C, et al. 2008. Study on characteristics of long-term gravity changes at Wuhan station. Chinese Sci. Bull., 53(13):2033-2040.

    [36]

    Xu J Q, Zhou J C, Chen X D, et al. 2014. Long-term observations of gravity tides from a superconducting gravimeter at Wuhan. Chinese J. Geophys. (in Chinese), 57(10):3091-3102, doi:10.6038/cjg20141001.

    [37]

    Xue Y Q. 1986. Principles of Groundwater Hydraulics (in Chinese). Beijing:Geological Publishing House.

    [38]

    Xue Y Q, Xie C H. 2007. Numerical Simulation for Groundwater (in Chinese). Beijing:Science Press.

    [39]

    Zhang R Q, Liang X, Jin M G, et al. 2011. Fundamentals of Hydrogeology. 6th ed. (in Chinese). Beijing:Geological Publishing House.

    [40]

    Zhang W M, Wang Y, Zhang C J. 2001. The preliminary analysis of the effects of the soil moisture on gravity observations. Acta Geodaetica et Cartographica Sinica (in Chinese), 30(2):108-111.

    [41]

    Zhang W M, Wang Y. 2007. Absolute gravity measurement at Jiufeng dynamic geodesy central experiment station. J. Geodesy Geodyn. (in Chinese), 27(4):44-46.

    [42]

    Zhou J C, Hwang C, Sun H P, et al. 2013. Precise determination of ocean tide loading gravity effect for absolute gravity stations in coastal area of China:Effects of land-sea boundary and station coordinate. J. Geodyn., 68:29-36, doi:10.1016/j.jog.2013.03.003.

    [43]

    陈晓东. 2003. 武汉九峰台超导重力仪固体潮观测资料的预处理和分析结果[硕士论文]. 武汉:中国科学院研究生院(测量与地球物理研究所).

    [44]

    罗少聪, 孙和平, 徐建桥. 2005. 大气变化对位移、重力和倾斜观测影响的理论计算. 地球物理学报, 48(6):1288-1294.

    [45]

    孙和平. 1997. 大气重力格林函数. 科学通报, 42(15):1640-1646.

    [46]

    孙和平, 徐建桥, Ducarme B. 2004. 基于国际超导重力仪观测资料检测地球固态内核的平动振荡. 科学通报, 49(8):803-813.

    [47]

    孙和平, 许厚泽, 周江存等. 2005. 武汉超导重力仪观测最新结果和海潮模型研究. 地球物理学报, 48(2):299-307.

    [48]

    2011年武汉市水资源公报.http://www.whwater.gov.cn/water/szyt/651.jhtml.

    [49]

    许厚泽, 孙和平, 徐建桥等. 2000. 武汉国际重力潮汐基准研究. 中国科学(D辑), 30(5):549-553.

    [50]

    徐建桥, 孙和平, 罗少聪. 2001. 利用国际超导重力仪观测资料研究地球自由核章动. 中国科学(D辑), 31(9):719-726.

    [51]

    徐建桥, 周江存, 罗少聪等. 2008. 武汉台重力长期变化特征研究. 科学通报, 53(5):583-588.

    [52]

    徐建桥, 周江存, 陈晓东等. 2014. 武汉台重力潮汐长期观测结果. 地球物理学报, 57(10):3091-3102, doi:10.6038/cjg20141001.

    [53]

    薛禹群. 1986. 地下水动力学原理. 北京:地质出版社.

    [54]

    薛禹群, 谢春红. 2007. 地下水数值模拟. 北京:科学出版社.

    [55]

    张人权, 梁杏, 靳孟贵等. 2011. 水文地质学基础(第6版). 北京:地质出版社.

    [56]

    张为民, 王勇, 张赤军. 2001. 土壤浸湿对重力观测影响的初步分析. 测绘学报, 30(2):108-111.

    [57]

    张为民, 王勇. 2007. 九峰动力大地测量中心实验站绝对重力测量. 大地测量与地球动力学, 27(4):44-46.

  • 加载中
计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2015-11-23
修回日期:  2016-05-27
上线日期:  2016-08-05

目录