共生黑钨矿与石英等多种矿物中流体包裹体的红外显微测温对比研究——以江西西华山石英脉钨矿床为例

黄惠兰, 常海亮, 谭靖, 李芳, 张春红, 周云. 共生黑钨矿与石英等多种矿物中流体包裹体的红外显微测温对比研究——以江西西华山石英脉钨矿床为例[J]. 岩石学报, 2015, 31(4): 925-940.
引用本文: 黄惠兰, 常海亮, 谭靖, 李芳, 张春红, 周云. 共生黑钨矿与石英等多种矿物中流体包裹体的红外显微测温对比研究——以江西西华山石英脉钨矿床为例[J]. 岩石学报, 2015, 31(4): 925-940.
HUANG HuiLan, CHANG HaiLiang, TAN Jing, LI Fang, ZHANG ChunHong, ZHOU Yun. Contrasting infrared microthermometry study of fluid inclusions in coexisting quartz, wolframite and other minerals: A case study of Xihuashan quartz-vein tungsten deposit, China[J]. Acta Petrologica Sinica, 2015, 31(4): 925-940.
Citation: HUANG HuiLan, CHANG HaiLiang, TAN Jing, LI Fang, ZHANG ChunHong, ZHOU Yun. Contrasting infrared microthermometry study of fluid inclusions in coexisting quartz, wolframite and other minerals: A case study of Xihuashan quartz-vein tungsten deposit, China[J]. Acta Petrologica Sinica, 2015, 31(4): 925-940.

共生黑钨矿与石英等多种矿物中流体包裹体的红外显微测温对比研究——以江西西华山石英脉钨矿床为例

  • 基金项目:

    本文受国土资源部公益性行业科研专项项目(200911043-04)资助.

Contrasting infrared microthermometry study of fluid inclusions in coexisting quartz, wolframite and other minerals: A case study of Xihuashan quartz-vein tungsten deposit, China

  • 西华山钨矿床是一个产于燕山期花岗岩中的大脉型钨矿床.已有百余年的开采史.但在矿床成矿条件和成矿流体性质等方面一直存在不同认识.作者利用红外显微镜及其它相关设备,对西华山矿床不同中段样品中的黑钨矿、锡石、绿柱石、黄铁矿、闪锌矿、石英和萤石中的流体包裹体进行了详细对比研究.结果显示,蚀变花岗岩中造岩石英只见次生气液包裹体,晶洞水晶中只有原生包裹体,而云英岩石英中原生、次生包裹体均较发育.黑钨矿中以原生气液包裹体为主,在早期结晶的黑钨矿中还有较多的硅酸盐熔融包裹体,而晶洞中的黑钨矿和水晶一样——只有原生气液包裹体.绿柱石中除了硅酸盐包裹体外,主要是气液包裹体(多为次生).其它锡石、黄铁矿、闪锌矿和萤石等都只有气液包裹体(原生或次生).研究结果表明,西华山钨矿床的初始成矿流体是一种岩浆——热液过渡性流体,尔后才演变成单一的热水溶液,在这一过程中黑钨矿、黄铁矿、闪锌矿、萤石和石英等矿物不断晶出.矿床总的成矿温度大致为700~200℃,压力约为160~200MPa.各种气液包裹体的盐度主要为5.0%~10% NaCleqv.文中还对这些数据的地质意义以及对脉钨矿床流体包裹体研究和数据解释中的某些问题进行了较深入的讨论.
  • 加载中
  • [1]

    Bodnar RJ and Vityk MO. 1994. Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In: De Vivo B and Frezzotti ML (eds.). Fluid Inclusions in Minerals: Methods and Applications. Blacksberg: Verginia Polytechnic Institute, 117-130

    [2]

    Campbell AR and Robinson-Cook S. 1987. Infrared fluid inclusion microthermometry on coexisting wolframite and quartz. Economic Geology, 82(6): 1640-1645

    [3]

    Campbell AR and Panter KS. 1990. Comparison of fluid inclusions in coexisting (cogenetic?) wolframite, cassiterite, and quartz from St. Michael's Mount and Cligga Head, Cornwall, England. Geochimica et Cosmochimica Acta, 54(3): 673-681

    [4]

    Cao XF, Lü XB, He MC, Niu H, Du BF and Mei W. 2009. An infrared microscope investigation of fluid inclusions in coexisting quartz and wolframite: A case of Yaogangxian quartz-vein wolframite deposit. Mineral Deposit, 28(5): 611-620 (in Chinese with English abstract)

    [5]

    Chang HL and Huang HL. 2001. Discovery and its significance of melt inclusions within beryl from the wolframite-quartz veins in Xihuashan orefield, Jiangxi. Geology and Mineral Resources of South China, (2): 21-27 (in Chinese with English abstract)

    [6]

    Chang HL and Huang HL. 2002. A preliminary investigation of melt inclusions and genesis of Xihuashan tungsten deposit. Acta Petrologica et Mineralogica, 21(2):143-150 (in Chinese with English abstract)

    [7]

    Chang HL, Wang XW, Wang XD, Liu JQ and Huang HL. 2007. The composition of melt inclusions in beryl from wolframite-quartz veins in Xihuashan, Jiangxi Province. Acta Petrologica et Mineralogica, 26(3): 259-268 (in Chinese with English abstract)

    [8]

    Chen YC, Pei RF and Zhang HL. 1989. The Geology of Non-ferrous and Rare Metal Deposits Related to Mesozoic Granitoids in Nanling Region. Beijing: Geological Publishing House (in Chinese)

    [9]

    Dong SH, Bi XW, Hu RZ, Chen YW and Chen H. 2011. Characteristics of ore-forming fluid in Yaogangxian quartz-vein wolframite deposit, Hunan Province. Journal of Mineralogy and Petrology, 51(2): 54-60 (in Chinese with English abstract)

    [10]

    Gan GL. 1991. A preliminary discuss on the properity of ore-forming fluid of the Huangsha vein-type tungsten deposit, Jiangxi Province. Bulletin of Yichang Inst. Geol. Mineral Resources, CAGS, (16): 83-94 (in Chinese)

    [11]

    Glyuk DS and Anfilogov VN. 1973. Phase equilibria in the system granite-H2O-HF at a pressure of 1000kg/cm2. Geochem. Inter., 10(10): 321-324

    [12]

    Glyuk DS, Trufanova LG and Bazarova SB. 1980. Phase relations in the granite-H2O-LiF syaten at 1000kg/cm2. Geochem. Inter., 17(5): 35-48

    [13]

    Goldstein RH and Reynolds TJ. 1994. Systematics of Fluid Inclusions in Diagenetic Minerals. Society of Sedimentary Geology. SEPM Short Course Notes Series 31, 199

    [14]

    Guo WK. 1983. Metallization of Xihuashan tungsten deposit: An example linking magmatic deuteric infiltration with hydrothermal lodes. Mineral Deposits, 2(2): 1-14 (in Chinese with English abstract)

    [15]

    Huang HL, Chang HL, Fu JM, Wang XW and Li TY. 2006. Formation pressure of wolframite-vein deposits and emplacement depth of related granite in Xihuashan,Jiangxi Province. Mineral Deposits, 25(5): 562-571 (in Chinese with English abstract)

    [16]

    Huang HL, Chang HL, Li F, Zhang CH, Tan J and Zhou Y. 2012. A comparative study of fluid inclusions from coexisting transparent minerals and opaque minerals in Xihuashan tungsten deposit. Mineral Deposits, 31(6): 1171-1183 (in Chinese with English abstract)

    [17]

    Kovalenko NI. 1977. The reactions between granite and aqueous hydrofluoric acid in relation to the origin of fluorine-bearing granites. Geokihimia, 15(4): 503-515 (in Russian with English abstract)

    [18]

    Li FC, Zhu JC, Rao B and Wang NS. 2003a. Experimental evidence for presence of magmatic Fe- and Li-muscovite in the Li-F-rich granite. Geochimica, 32(1): 75-80 (in Chinese with English abstract)

    [19]

    Li FC, Zhu JC, Rao B, Jin ZD and Zhang LS. 2003b. The genesis of rich Li-F granite: The experimental evidence of the high temperture and pressure. Science in China (Series D), 33(9): 841-851(in Chinese)

    [20]

    Li HQ, Liu JQ and Wei L. 1993. Fluid Inclusion Chronology Studies of Hydrothermal Ore Deposits and Their Geological Application. Beijing: Geological Publishing House, 28-49 (in Chinese)

    [21]

    Lin XD, Zhang DH and Zhang CL. 1986. A discussion on the property of ore-forming fluid of the wolframite quartz-vein in the Yaogangxian tungsten deposit, Yizhang County, Hunan Province. Earth Science, 11(2) 153-160 (in Chinese with English abstract)

    [22]

    Lin XD. 1998. Geological characteristics of magma-hydrothermal transitional ore deposits. Geoscience, 12(4): 485-492 (in Chinese with English abstract)

    [23]

    Liu JQ and Chang HL. 1987. Thermobarogeochemical study on some Yanshanian granitc intrusions and related vein-type tungsten deposits in the Nanling Region. In: Yichang Institute of Geology and Mineral Resources (ed.). Research Reports of the Geology and Mineral Resources of Nanling. Wuhan: Wuhan College of Geology Press, 145-196 (in Chinese))

    [24]

    Liu JQ. 1989. The Xihuashan granite and its mineralization. Bulletin of the Chinese Academy of Geological Sciences, (19): 83-104 (in Chinese with English abstract)

    [25]

    Liu JQ and Ceng YS. 2000. The stable isotopic composition of fluid inclusions in a mega-quartz crystal. Geology and Mineral Resources of South China, (2): 1-5 (in Chinese with English abstract)

    [26]

    Lu HZ. 1986. The Origin of Tungsten Mineral Deposits in South China. Chongqing: Chongqing Publishing House, 133-212 (in Chinese)

    [27]

    Lu HZ, Fan HR, Ni P, Ou GX, Shen K and Zhang WH. 2004. Fluid Inclusions. Beijing: Science Press, 154-171 (in Chinese)

    [28]

    Mu ZG, Huang FS, Chen CY, Zheng SH, Fan SL, Liu DR and Mei YW. 1981. Oxygen, hydrogen and carbon isotope studies of Piaotang and Xihuashan quartz-vein-type tungsten deposits, Jiangxi Province. In: Yu HZ (ed.). Proceeding of Symposium on Tungsten Geology. Beijing: Geological Publishing House, 153-169 (in Chinese)

    [29]

    Ni JW. 1994. Research on fluid inclusion and ore-forming liquid characters of Yaoganxian tungsten deposit. Journal of Zhejiang University (Natural Science), 28(1): 73-81 (in Chinese with English abstract)

    [30]

    Ni P, Huang JB, Wang XD, Jiang SY and Ling HF. 2006. Infrared fluid inclusion microthermometry on coexisting wolframite and quartz from Dajishan tungsten deposit, Jiangxi Province, China. Geochimica et Cosmochimica Acta, 70(18): A444

    [31]

    Nie RF and Wang XD. 2007. Fluid inclusion research of the tungsten deposit in south Jiangxi: Taking tungsten deposit of Xihuashan in Jiangxi Province as an example. Mineral Resources and Geology, 21(3): 228-231 (in Chinese with English abstract)

    [32]

    Roedder E. 1979. Origin and significance of magmatic inclusions. Bull. Mineral., 102: 487-510

    [33]

    Rui ZY, Li YQ, Wang LS and Wang YT. 2002. Preliminary discussion on ore-forming fluids and enrichment system of metallic minerals. Mineral Deposits, 21(1): 83-90 (in Chinese with English abstract)

    [34]

    Rui ZY, Li YQ, Wang LS and Wang YT. 2003. Approach to ore-forming conditions in lights of ore fluid inclusions. Mineral Deposits, 22(1): 13-23 (in Chinese)

    [35]

    Sheng JF, Li YD, Bel LL and Giuliani G. 1985. A study of fluid inclusions and metallogenesis of the Xihuashan tungsten deposit. Bulletin of the Institute of Mineral Deposits, Chinese Academy of Geological Sciences, (14): 44-61 (in Chinese)

    [36]

    Song SQ, Hu RZ, Bi XW, Wei WF and Shi SH. 2011. Fluid inclusion geochemistry of the Taoxikeng tungsten deposit in southern Jiangxi Province, China. Geochimica, 40(3): 237-248 (in Chinese with English abstract)

    [37]

    Wang D, Lu HZ and Bi XW. 2011. Comparison of characteristics of ore forming fluids between quartz-vein tungsten deposits and porphyry copper deposits associated with granitic rocks. Earth Science Frontiers, 18(5): 121-131 (in Chinese with English abstract)

    [38]

    Wang QY, Hu RZ, Peng JT, Bi XW, Wu LY, Liu H and Su BX. 2007. Characteristics and significance of the fluid inclusions from Yaogangxian tungsten deposit in south of Hunan. Acta Petrologica Sinica, 23(9): 2263-2273 (in Chinese with English abstract)

    [39]

    Webster JD, Holloway JR and Hervic RL. 1987. Phase equilibria of a Be, U and F-enriched vitrophyre from Spor Mountain, Utah. Geochimica et Cosmochimica Acta, 51(3): 389-402

    [40]

    Wei WF, Hu RZ, Bi XW, Su WC, Song SQ and Shi SH. 2011. Fluid evolution in Xihuashan tungsten deposit, southern Jiangxi Province, China. Acta Mineralogica Sinica, 31(2): 201-210 (in Chinese with English abstract)

    [41]

    Wu YL, Mei YW, Liu PC, Cai CL and Lu TY. 1987. Geology of the Xihuashan Tungsten ore Field. Beijing: Geological Publishing House (in Chinese)

    [42]

    Xia WH, Zhang JT, Feng ZW and Chen ZY. 1989. Geology of Granite-Type Rare-Metal Ore Deposits in Nanling Region. Wuhan: China University of Geosciences Press, 112-115 (in Chinese)

    [43]

    Xiong XL, Zhu JC, Rao B and Lai MY. 1999. Phase relations in the albite granite-H2O-HF system and the genesis of topaz-bearing granitic rocks. Geological Review, 45(3): 313-322 (in Chinese)

    [44]

    Xu XZ and Li PL. 1988. Characters of the thermal ore fluids at Xihuashan tungsten field. Mineral Resources and Geology, 2(1): 81-87(in Chinese)

    [45]

    Zhang DH. 1987. A further discussion on the property of ore-forming fluid of the quartz-vein type wolframite deposit. Earth Science, 12(2): 185-192 (in Chinese)

    [46]

    Zhang LG. 1985. The Application of Stable Isotop to Geology. Xi'an: Shaanxi Science & Technology Publishing House, 167-172 (in Chinese)

    [47]

    Zhang WH and Chen ZY. 1993. Fluid Inclusions Geology. Wuhan: China University of Geosciences Press, 1993, 68-80 (in Chinese)

    [48]

    Zhu JC. 1997. Water flow in silicon-aluminum lava system. Journal of Nanjing University (Natural Sciences), 33: 11-20 (in Chinese)

    [49]

    Zhu JC, Rao B, Xiong XL, Li FC and Zhang PH. 2002. Comparison and genetic interpretation of Li-F rich, rare-metal bearing granitic rocks. Geochimica, 31(2): 131-152 (in Chinese with English abstract)

    [50]

    Zhu YL. 1981. Geology of Tungsten Mineral Deposits in South Jiangxi Province. Nanchang: Jiangxi People Publishing House, 324-437 (in Chinese)

    [51]

    曹晓峰, 吕新彪, 何谋春, 牛宏, 杜保峰, 梅微. 2009. 共生黑钨矿与石英中流体包裹体红外显微对比研究——以瑶岗仙石英脉型钨矿床为例. 矿床地质, 28(5): 611-620

    [52]

    常海亮, 黄惠兰. 2001. 西华山黑钨矿石英脉绿柱石中熔融包裹体的发现及其意义. 华南地质与矿产, (2): 21-27

    [53]

    常海亮, 黄惠兰. 2002. 西华山钨矿床中熔融包裹体的初步研究与矿床成因探讨. 岩石矿物学杂志, 21(2): 143-150

    [54]

    常海亮, 汪雄武, 王晓地, 刘家齐, 黄惠兰. 2007. 西华山黑钨矿-石英脉绿柱石中熔融包裹体的成分. 岩石矿物学杂志, (3): 259-268

    [55]

    陈毓川, 裴荣富, 张宏良. 1989. 南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质. 北京: 地质出版社, 471-474

    [56]

    董少华, 毕献武, 胡瑞忠, 陈佑纬, 陈恒. 2011. 湖南瑶岗仙石英脉型黑钨矿床成矿流体特征. 矿物岩石, 51(2): 54-60

    [57]

    干国梁. 1991. 江西黄沙脉钨矿床成矿流体性质的初步探讨. 中国地质科学院宜昌地质矿产研究所所刊,第16号:83-94

    [58]

    郭文魁. 1983. 西华山钨矿床的金属矿化作用: 一个与岩浆后期渗浸相联系的热液脉矿的实例. 矿床地质, 2(2): 1-14

    [59]

    黄惠兰, 常海亮, 付建明, 汪雄武, 李桃叶. 2006. 西华山脉钨矿床的形成压力及有关花岗岩的侵位深度. 矿床地质, 25(5): 562-571

    [60]

    黄惠兰, 常海亮, 李芳, 张春红 谭靖, 周云. 2012. 西华山钨矿床共生透明矿物与不透明矿物中流体包裹体的对比研究. 矿床地质, 31(6): 1171-1183

    [61]

    李福春, 朱金初, 饶冰, 王年生. 2003a. 富锂氟花岗岩中存在岩浆成因铁/锂白云母的实验证据. 地球化学, 32(1): 75-80

    [62]

    李福春, 朱金初, 饶冰, 金章东, 张林松. 2003b. 富锂氟花岗岩成因: 高温高压实验证据. 中国科学(D辑), 33(9): 841-851

    [63]

    李华芹, 刘家齐, 魏林. 1993. 热液矿床流体包裹体年代学研究及其地质应用. 北京: 地质出版社, 28-49

    [64]

    林新多, 张德会 章传玲. 1986. 湖南宜章瑶岗仙黑钨矿石英脉成矿流体性质的探讨. 地球科学, 11(2): 153-160

    [65]

    林新多. 1998. 岩浆-热液过渡型矿床的若干特征. 现代地质, (4): 485-492

    [66]

    刘家齐, 常海亮. 1987. 南岭地区某些燕山期花岗岩脉钨矿床的温压地球化学研究. 见: 宜昌地矿所编. 南岭地质矿产科学研究报告集. 武汉: 武汉地质学院出版社, 145-196

    [67]

    刘家齐. 1989. 西华山花岗岩及其成矿作用. 中国地质科学院学报, (19): 83-104

    [68]

    刘家齐, 曾贻鄯. 2000. 一个巨大水晶中流体包裹体稳定同位素地球化学特征. 华南地质与矿产, (2): 1-5

    [69]

    卢焕章. 1986. 华南钨矿成因. 重庆: 重庆出版社, 133-212

    [70]

    卢焕章. 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体. 北京: 科学出版社, 154-171

    [71]

    穆治国, 黄福生, 陈成业, 郑淑蕙, 潘素兰, 刘大任, 梅勇文. 1981. 漂塘-西华山石英脉型钨矿床碳、氢、氧同位素研究. 见: 余鸿彰编. 钨矿床地质讨论会论文集. 北京: 地质出版社,153-169

    [72]

    倪纪文. 1994. 瑶岗仙钨矿床包体研究及成矿溶液特征的探讨. 浙江大学学报(自然科学版), 28(1): 73-81

    [73]

    聂荣峰, 王旭东. 2007. 赣南钨矿流体包裹体研究——以江西西华山钨矿床为例. 矿产与地质, 21(3): 228-231

    [74]

    芮宗瑶, 李荫清, 王龙生, 王义天. 2002. 初论成矿流体及金属矿物富集系统. 矿床地质, 21(1): 83-90

    [75]

    芮宗瑶, 李荫清, 王龙生, 王义天. 2003. 从流体包裹体研究探讨金属矿床成矿条件. 矿床地质, 22(1): 13-23

    [76]

    盛继福, 李亿斗, Bel LL, Giuliani G. 1985. 西华山钨矿流体包裹体及其成矿作用研究. 中国地质科学院矿床地质研究所文集, (14): 44-61

    [77]

    宋生琼, 胡瑞忠, 毕献武, 魏文凤, 石少华. 2011. 赣南淘锡坑钨矿床流体包裹体地球化学研究. 地球化学 40(3): 237-248

    [78]

    王蝶, 卢焕章, 毕献武. 2011. 与花岗质岩浆系统有关的石英脉型钨矿和斑岩型铜矿成矿流体特征比较. 地学前缘, 18(5): 121-131

    [79]

    王巧云 胡瑞忠, 彭建堂, 毕献武, 武丽艳, 刘华, 苏本勋. 2007. 湖南瑶岗仙钨矿床流体包裹体特征及其意义. 岩石学报, 23(9): 2263-2273

    [80]

    魏文凤, 胡瑞忠, 毕献武, 苏文超, 宋生琼, 石少华. 2011. 赣南西华山钨矿床成矿流体演化特征. 矿物学报, 31(2): 201-210

    [81]

    吴永乐, 梅勇文, 刘鹏程, 蔡常良, 卢同衍. 1987. 西华山钨矿地质. 北京: 地质出版社

    [82]

    夏卫华, 章锦统, 冯志文, 陈紫英. 1989. 南岭花岗岩型稀有金属矿床地质. 武汉: 中国地质大学出版社, 112-115

    [83]

    熊小林, 朱金初, 饶冰, 赖鸣远. 1999. 钠长花岗岩-H2O-HF体系相关及含黄玉花岩质岩石的成因. 地质论评, 45(3): 313-322

    [84]

    余行祯, 李佩兰. 1988. 西华山钨矿田成矿热流体性质分析. 矿产与地质, 2(1): 81-87

    [85]

    张德会. 1987. 石英脉型黑钨矿床成矿流体性质的进一步探讨. 地球科学, 12(2): 185-192

    [86]

    张理刚. 1985. 稳定同位素在地质科学中的应用. 西安: 陕西科学技术出版社, 167-172

    [87]

    张文淮, 陈紫英. 1993. 流体包裹体地质学. 武汉: 中国地质出版社, 68-80

    [88]

    朱金初. 1997. 硅铝质熔浆体系中的水质流体. 南京大学学报(自然科学版), 33: 11-20

    [89]

    朱金初, 饶冰, 熊小林, 李福春, 张佩华. 2002. 富锂氟含稀有矿化花岗质岩石的对比和成因思考. 地球化学, 31(2): 131-152

    [90]

    朱焱龄. 1981. 赣南钨矿地质. 南昌: 江西人民出版社, 324-437

  • 加载中
计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2013-02-26
修回日期:  2014-01-22
刊出日期:  2015-04-30

目录