摘 要: | 机器学习模型(Machine Learning,ML)的不可解释性给其在气象业务中的应用带来了挑战。模型解释和可视化是解决这一问题的有效途径。文中将SHAP值应用于天气预报ML模型解释,研究了江西省暖季暴雨模型的预报因子对预报结果的影响。分别选取2016—2020年、2021—2022年4—9月ECWMF(European Centre for Medium-Range Weather Forecasts)高分辨率数值模式物理量及国家站降水观测数据进行XGBoost 建模与模型解释。结果表明,全局重要性排名前4位依次是总降水(重要性42.70%)、850 hPa比湿(重要性11.17%)、925 hPa相对湿度(重要性10.44%)、500 hPa相对湿度(重要性 9.16%)。个例分析表明,命中个例中高重要性物理因子在暴雨区的 SHAP 值较大,漏报(空报)个例在漏报(空报)区域高重要性物理因子的SHAP值偏小(偏大)。SHAP值从全局和局部可定量给出ML模型有物理意义的解释,解释结果与天气学原理和业务经验较一致,有利于ML在气象业务中的深入应用。
|