首页 | 本学科首页   官方微博 | 高级检索  
     

2017—2019年太原南部城区夏季O3特征及其影响因子
引用本文:卢盛栋,李军霞,李芬,赵俊杰,靳泽辉,李莹,刘潇. 2017—2019年太原南部城区夏季O3特征及其影响因子[J]. 气象与环境学报, 2021, 37(3): 40-46. DOI: 10.3969/j.issn.1673-503X.2021.03.006
作者姓名:卢盛栋  李军霞  李芬  赵俊杰  靳泽辉  李莹  刘潇
作者单位:山西省气象灾害防御技术中心,山西 太原030012;五台山气象站,山西 五台山035515;山西省气象科学研究所,山西 太原030002
基金项目:山西省气象局科学技术面上项目(SXKMSFW20205222)
摘    要:利用2017—2019年夏季(6—8月)太原市污染物浓度和气象逐小时数据,分析了太原南部城区O3浓度及其影响因子的变化特征,通过神经网络构建了O3与其影响因子的关系模型,并进行了检验.结果表明:2017—2019年夏季太原南部城区O3浓度超标天数分别为55 d、39 d、59 d,超标主要集中在6月和7月;O3浓度日变...

关 键 词:O3浓度  气象因子  神经网络
收稿时间:2020-07-28

Analysis of the characteristics of O3 concentration and its influencing factors in summer from 2017 to 2019 in the southern urban area of Taiyuan
Sheng-dong LU,Jun-xia LI,Fen LI,Jun-jie ZHAO,Ze-hui JIN,Ying LI,Xiao LIU. Analysis of the characteristics of O3 concentration and its influencing factors in summer from 2017 to 2019 in the southern urban area of Taiyuan[J]. Journal of Meteorology and Environment, 2021, 37(3): 40-46. DOI: 10.3969/j.issn.1673-503X.2021.03.006
Authors:Sheng-dong LU  Jun-xia LI  Fen LI  Jun-jie ZHAO  Ze-hui JIN  Ying LI  Xiao LIU
Affiliation:1. Shanxi Meteorological Disaster Prevention Technology Center, Taiyuan 030012, China2. Wutai Mountain Meteorological station, Shanxi 035515, China3. Shanxi Meteorological Science Research Institute, Taiyuan 030002, China
Abstract:Based on the hourly data of pollutant concentration and relative meteorological factors during summer (June to August) from 2017-2019, the distribution characteristics of O3 concentration and its influencing factors in Taiyuan were analyzed using the neural network method.The results show that, during the summer from 2017-2019, the numbers of days in which the O3 concentration exceeds the limit in Taiyuan are 55 d, 39 d, 59 d, respectively.The cases that the O3 concentration exceeds the limit mostly occur in June and July.The diurnal variation of O3 concentration is unimodal, with the lowest around 06:00, and the peak around 15:00.The conditions such as high temperature, strong radiation, low humidity, low pressure, and southwest wind can easily lead to an increase of O3 concentration in Taiyuan urban areas.The NW wind is beneficial to the diffusion of O3 concentration.The relationships of NO2 and CO with O3 concentration are negative, and the influence of NO2 is more significant.The selected cases show that the O3 concentration fluctuates with the influencing factors.The relationship between O3 concentration and the influencing factors is constructed using the neural network method, with the correlation coefficient of 0.96, the mean square root and average absolute error of 8 μg·m-3 and 6%, respectively, and TS score of 0.95.The neural network model is valuable for the O3 concentration prediction and ozone pollution control in the Taiyuan area.
Keywords:O3 concentration  Meteorological factors  Neural network  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《气象与环境学报》浏览原始摘要信息
点击此处可从《气象与环境学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号