摘 要: | 作为光纤陀螺误差的重要组成部分,随机噪声严重影响着光纤陀螺的精度,对光纤陀螺随机噪声进行准确建模和补偿是提升陀螺精度的有效方式。本文针对光纤陀螺随机噪声的复杂性,难以对其进行精确分析,ARIMA (auto-regressive moving average)模型Kalman滤波中有色噪声不能使用状态扩充法建模的问题,扩展了Harvey方程,实现有色噪声白化。同时,考虑先验噪声的不确定性以及模型参数在线更新导致的参数与状态噪声相互耦合,分析了动态Allan方差估计量测噪声的不足,使用VBAKF (variational Bayesian adaptive Kalman filter)实时修正滤波状态噪声与量测噪声。试验表明,Harvey法较传统滤波建模方式,随机噪声序列方差降低40%,Harvey法结合VBAKF使序列方差降低了54%;VBAKF较动态Allan方差,可以更好地估计量测噪声。结果表明,此方法可有效抑制随机噪声Kalman滤波中有色噪声和随机模型不准确的影响,提高随机误差补偿精度。
|