首页 | 本学科首页   官方微博 | 高级检索  
     

基于极限学习机的GF-2影像分类
引用本文:王明常,张馨月,张旭晴,王凤艳,牛雪峰,王红. 基于极限学习机的GF-2影像分类[J]. 吉林大学学报(地球科学版), 2018, 48(2): 373-378. DOI: 10.13278/j.cnki.jjuese.20170271
作者姓名:王明常  张馨月  张旭晴  王凤艳  牛雪峰  王红
作者单位:1. 吉林大学地球探测科学与技术学院, 长春 130026;2. 湖北大学资源环境学院, 武汉 430062;3. 国土资源部城市土地资源监测与仿真重点实验室, 广东 深圳 518000
基金项目:国家自然科学基金项目,国土资源部城市土地资源监测与仿真重点实验室开放基金项目,区域开发与环境响应湖北省重点实验室开放研究基金项目(2015(B),003) Supported by National Natural Science Foundation of China,Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation;Ministry of Land and Resources,Open Research Fund Program of Hubei Province Key Laboratory of Regional Development and Environmental Response(2015(B),003)
摘    要:遥感图像分类是提取图像有效信息过程中重要的一部分,为了探寻最优的分类方法,许多机器学习算法逐步应用于遥感分类中。极限学习机(extreme learning machine,ELM)以其高效、快速和良好的泛化性能在模式识别领域得到广泛应用。本文采用训练速度快、运算量小的极限学习机算法与支持向量机(support vector machines,SVM)算法和最大似然法进行分类对比,对高分辨率遥感图像进行分类,分析极限学习机算法对于遥感图像分类的准确度等性能。选取吉林省长春市部分区域的GF-2遥感数据,将融合后的影像设置为原始数据,利用3种方法进行分类。研究结果表明,极限学习机算法分类图像总体分类精度达到85%以上,kappa系数达到0.718,与其他分类方法相比分类准确度较高,且极限学习机运行时间比支持向量机运行时间约短2 480 s,约为支持向量机运行时间的1/8,因此具有良好的性能和实用价值。

关 键 词:极限学习机  遥感图像分类  GF-2影像  监督分类  支持向量机  
收稿时间:2017-09-07

GF-2 Image Classification Based on Extreme Learning Machine
Wang Mingchang,Zhang Xinyue,Zhang Xuqing,Wang Fengyan,Niu Xuefeng,Wang Hong. GF-2 Image Classification Based on Extreme Learning Machine[J]. Journal of Jilin Unviersity:Earth Science Edition, 2018, 48(2): 373-378. DOI: 10.13278/j.cnki.jjuese.20170271
Authors:Wang Mingchang  Zhang Xinyue  Zhang Xuqing  Wang Fengyan  Niu Xuefeng  Wang Hong
Affiliation:1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
2. Faculty of Resources and Environment, Hubei University, Wuhan 430062, China;
3. Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Land and Resources, Shenzhen 518000, Guangdong, China
Abstract:The classification of remote sensing image is an important part of extracting effective information of images.In order to explore the optimal classification methods,many machine learning algorithms are gradually applied to the classification of remote sensing images.Because of the high efficiency,speediness,and good performance generalization,extreme learning machines(ELM)have been widely used in pattern recognition.This paper aims to classify high-resolution remote sensing images,and analyze the performance of extreme learning machine algorithms for the accuracy of classification of remote sensing images,and compare ELM algorithm with support vector machines (SVM)algorithm and Maximum likelihood method.The GF-2 data from some area in Changchun City were selected to test the accuracy of all the three methods for classification with the fused image as the original data.The results show that the overall accuracy of ELM algorithm is more than 85%,and the kappa coefficient is 0.718.Compared with the other two classification methods,the ELM classification accuracy is the best,and its running time is faster than the support vector machine by 2 480 s,1/8 of the support vector machine's.An even better performance can be obtained in a shorter training time. ELM is valuable for classification of remote sensing images.
Keywords:extreme learning machine  remote sensing image classification  GF-2 image  supervised classification  support vector machines  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(地球科学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(地球科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号