首页 | 本学科首页   官方微博 | 高级检索  
     

圆紫菜人工色素突变体的诱导与分离
引用本文:赵爽,丁洪昌,刘长军,严兴洪. 圆紫菜人工色素突变体的诱导与分离[J]. 海洋学报, 2019, 41(2): 114-122. DOI: 10.3969/j.issn.0253-4193.2019.02.011
作者姓名:赵爽  丁洪昌  刘长军  严兴洪
作者单位:上海海洋大学 水产种质资源发掘与利用教育部重点实验室,上海 201306;上海海洋大学 水产科学国家级实验教学示范中心,上海 201306;上海海洋大学 上海水产养殖工程技术研究中心,上海 201306;象山县水产技术推广站,浙江 象山,315700
基金项目:国家高技术研究发展计划(863计划)资助项目(2012AA10A411);国家自然科学基金(31072208);福建省省长专项基金项目(2014S1477-10);浙江省农业(水产)新品种选育重大科技专项(2016C02055-6);国家重点研发计划"蓝色粮仓科技创新"重点专项(2018YFD0900606);江苏省科技计划(现代农业)重点项目(BE2018335)。
摘    要:为获得圆紫菜人工色素突变体,本文使用一定剂量的紫外线辐照其叶状体,培养数天后,在叶状体上出现了少量颜色变异细胞,它们呈斑点状无规则地分布在野生型细胞中间。再培养2~3周,这些色素变异细胞分裂形成了不同颜色的细胞块,其颜色呈浅绿黄、橄榄色、草绿、绿褐、黄褐、浅褐、深紫红和浅紫红色等。在辐照强度0~80 μW/cm2范围内,叶状体上色素变异细胞块出现的频率随辐照强度的增加而增加,但增加至80 μW/cm2以上时,随着辐照强度的增加,色素变异细胞块出现的频率反而下降,这表明80 μW/cm2为有效的辐照强度。将色素变异细胞块切下,置入充气瓶内充气培养,待其释放出单孢子,随后从单孢子萌发体中挑选出了黄褐、橄榄色、红色、褐红等纯色的突变体,并利用叶状体单性生殖分别获得它们的遗传纯合丝状体(品系)。各突变品系的F1叶状体与各自母体的颜色一样,说明其颜色是可稳定遗传的。与野生型品系相比,各色素突变品系的F1叶状体的生长速度、活体吸收光谱、3种主要光合色素和色素蛋白的含量及它们相互间的比值均发生了明显改变。

关 键 词:圆紫菜  紫外线  变异细胞  色素突变体  特性分析
收稿时间:2018-04-05
修稿时间:2018-06-14

Induction and isolation of pigmentation mutants in Pyropia suborbiculata Kjellman (Bangiales, Rhodophyta)
Zhao Shuang,Ding Hongchang,Liu Changjun and Yan Xinghong. Induction and isolation of pigmentation mutants in Pyropia suborbiculata Kjellman (Bangiales, Rhodophyta)[J]. Acta Oceanologica Sinica (in Chinese), 2019, 41(2): 114-122. DOI: 10.3969/j.issn.0253-4193.2019.02.011
Authors:Zhao Shuang  Ding Hongchang  Liu Changjun  Yan Xinghong
Affiliation:1.Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China;Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China2.Xiangshan Fisheries Technical Extension Center, Xiangshan 315700, China
Abstract:In order to obtain the artificial pigmentation mutants, a certain dose of ultraviolet ray was used to irradiate the gametophytic blades developed from conchospores of the wild-type strain in Pyropia suborbiculata. Color-mutated cells of showing light green yellow, olive, green, green brown, yellow brown, light brown, dark purple red and light purple red and other mutated colors appeared in the UV-irradiated blades after being cultured of 7 to 14 d. These color-mutated cells grew to form different color cell-clusters after being cultured for an additional 2 to 3 weeks. The frequency of appearing color-mutated cell-clusters on the gametophytic blades increased with increasing intensity of ultraviolet irradiation from 0-80 μW/cm2. However, as the radiation intensity increased to 100 μW/cm2, the frequency of appearing color-mutant cell-clusters decreased on gametophytic blades. These results indicate that 80 μW/cm2 is most effictive intensity of ultraviolet irradiation for inducing mutations of gametophytic blades in Pyropia suborbiculata. The color-mutated cell-clusters were cutted, placed in aerating culture bottle and cultured, until they released monospores. The nylon cotton thread was placed into aerating culture bottle and used for monospores adhering matrix. Monospores on the cotton thread were cultured, and germinated into blades. From the blades arising from germination of monospores, yellow brown, olive, red, brown red, and other single-colored mutant blades were selected. Subsequently, the respective genetic homozygous conchocelis (strains) were obtained using the gametophytic blades parthenogenesis. Their colors were relatively stable in both F1 gametophytic blade and conchocelis phases. The F1 gametophytic blades of each mutant strains from conchospores are the same color as the respective parent blades, indicating that the color is stably inherited. In vivo absorption spectra and contents of chlorophyll a, phycoerythrin and phycocyanin of F1 gametophytic blades from conchospores of pigmentation mutant strains and the wild-type strain in Pyropia suborbiculata were measured. The results show that, compared with wild-type strains, the growth rate, the in vivo absorption spectrum, the contents of the three main photosynthetic pigments and pigment proteins, and their ratios to each other are changed significantly in the F1 gametophytic blades of each pigmentation mutant strains.
Keywords:Pyropia suborbiculata  ultraviolet ray  pigment-mutated cells  gametophytic blades  characterization
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《海洋学报》浏览原始摘要信息
点击此处可从《海洋学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号