首页 | 本学科首页   官方微博 | 高级检索  
     

基于HRNet的高分辨率遥感影像建筑物变化信息提取
引用本文:陈智朗,付振华,朱紫阳,王慧慧,刘沁雯,杨钰灵,许耿然. 基于HRNet的高分辨率遥感影像建筑物变化信息提取[J]. 测绘通报, 2022, 0(5): 126-132. DOI: 10.13474/j.cnki.11-2246.2022.0153
作者姓名:陈智朗  付振华  朱紫阳  王慧慧  刘沁雯  杨钰灵  许耿然
作者单位:1. 广东省国土资源测绘院, 广东 广州 510663;2. 自然资源部华南热带亚热带自然资源 重点实验室, 广东 广州 510663;3. 广东省自然资源科技协同创新中心, 广东 广州 510663;4. 武汉汉达瑞科技有限公司, 湖北 武汉 430299
基金项目:广东省省级科技计划(2018B020207002);
摘    要:建筑物图斑变化检测是遥感影像信息提取的重要内容之一,对于土地调查、自然资源常态化监测、土地执法监测等具有重要意义。岭南地区建设结构复杂,高分辨率遥感影像信息丰富,包含建筑结构细节多种多样,加上成像的季节不同、时间不同等因素导致建筑物变化信息的自动提取十分困难。针对此问题,本文提出了基于HRNet的语义分割模型,通过筛选保留高分辨率的特征层,从而保留更细节的图像信息。此外,结合图像分割二值化对结果进行优化,在一定程度上提高了高分辨率遥感影像建筑物变化自动检测的能力。

关 键 词:高分辨率遥感影像  建筑物变化信息提取  HRNet  图像分割二值化  
收稿时间:2021-09-06

HRNet-based extraction of building change information from high-resolution remote sensing images
CHEN Zhilang,FU Zhenhua,ZHU Ziyang,WANG Huihui,LIU Qinwen,YANG Yuling,XU Gengran. HRNet-based extraction of building change information from high-resolution remote sensing images[J]. Bulletin of Surveying and Mapping, 2022, 0(5): 126-132. DOI: 10.13474/j.cnki.11-2246.2022.0153
Authors:CHEN Zhilang  FU Zhenhua  ZHU Ziyang  WANG Huihui  LIU Qinwen  YANG Yuling  XU Gengran
Affiliation:1. Surveying and Mapping Institute Lands and Resource Department of Guangdong Province, Guangzhou 510663, China;2. Key Laboratory of Natural Resources Monitoring in Tropical and Subtropical Area of South China, Ministry of natural resources, Guangzhou 510663, China;3. Guangdong Science and Technology Collaborative Innovation Center for Natural Resources, Guangzhou 510663, China;4. Wuhan Handleray Technology Co., Ltd., Wuhan 430299, China
Abstract:Building change extraction is one of the important research areas of remote sensing image information extraction, which is of great significance for land survey, natural resources monitoring and land law enforcement. The complex construction structure in Lingnan area of China contains a variety of building structure details, which reflect rich information on the high-resolution remote sensing images, and the factors of influence such as abundant data sources and imaging seasonal differences. It makes the automatic extraction of building change information very difficult. To address this problem, this paper proposes a semantic segmentation model based on HRNet, which achieves the retention of more detailed texture information by screening the feature layers that retain high resolution. On this basis, the automatic detection capability of building changes in high-resolution remote sensing images is improved by GraphCut binarization optimization.
Keywords:high-resolution remote sensing images  building change extraction  HRNet  GraphCut  
本文献已被 万方数据 等数据库收录!
点击此处可从《测绘通报》浏览原始摘要信息
点击此处可从《测绘通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号