西沙海域内潮与近惯性内波的相互作用

毛华斌, 陈桂英, 尚晓东, 练树民. 西沙海域内潮与近惯性内波的相互作用[J]. 地球物理学报, 2013, 56(2): 592-600, doi: 10.6038/cjg20130222
引用本文: 毛华斌, 陈桂英, 尚晓东, 练树民. 西沙海域内潮与近惯性内波的相互作用[J]. 地球物理学报, 2013, 56(2): 592-600, doi: 10.6038/cjg20130222
MAO Hua-Bin, CHEN Gui-Ying, SHANG Xiao-Dong, LIAN Shu-Min. Interaction between internal tides and near-inertial waves at Xisha area[J]. Chinese Journal of Geophysics (in Chinese), 2013, 56(2): 592-600, doi: 10.6038/cjg20130222
Citation: MAO Hua-Bin, CHEN Gui-Ying, SHANG Xiao-Dong, LIAN Shu-Min. Interaction between internal tides and near-inertial waves at Xisha area[J]. Chinese Journal of Geophysics (in Chinese), 2013, 56(2): 592-600, doi: 10.6038/cjg20130222

西沙海域内潮与近惯性内波的相互作用

详细信息
    作者简介:

    毛华斌,男,1981年生,助理研究员,主要从事海洋内波与混合研究.

    通讯作者: 尚晓东,研究员,博士生导师,从事海洋中小尺度动力过程、海洋湍流与海洋混合研究.E-mail:xdshang@scsio.ac.cn
  • 中图分类号: P738

Interaction between internal tides and near-inertial waves at Xisha area

More Information
  • 通过使用西沙海域锚定潜标的测流数据,分析了距浣熊台风路径100 km处海流受浣熊台风影响前后的动能谱、旋转谱和流剪切谱,从而阐明近惯性波,以及近惯性波与全日内潮波的相互作用机制.台风浣熊之后所引起的近惯性波主要在上250 m较强,其能量是普通风场所引起的40倍.近惯性波的能量向下传播至450 m左右,与此同时,强的近惯性流的剪切驱动着惯性波与全日内潮波之间的相互作用,从而产生强的近惯性波与全日内波的耦合波(f+D1).此三波耦合机制为Davies的波波相互作用理论提供了观测依据,同时,近惯性内波与全日内潮波之间的非线性相互作用,揭示了南海近惯性波能量耗散的一种机制.
  • 加载中
  • [1]

    Webster F. Observations of inertial-period motions in the deep sea. Reviews of Geophysics, 1968, 6(4): 473-490. doi: 10.1029/RG006i004p00473.

    [2]

    Ekman V W. On the influence of the Earth's rotation on ocean-currents. Ark. Mat. Astron. Fys., 1905, 2(11): 1-52.

    [3]

    Brooks D A. The wake of hurricane Allen in the western Gulf of Mexico. J. Phys. Oceanogr., 1983, 13(1): 117-129.

    [4]

    Barron C N Jr, Vastano A C. Satellite observations of surface circulation in the northwestern Gulf of Mexico during March and April 1989. Cont. Shelf Res., 1994, 14(16): 607-627.

    [5]

    Gill A E. Atmosphere-Ocean Dynamics. San Diego: Academic Press, 1982: 662.

    [6]

    Munk W, Phillips N. Coherence and band structure of inertial motion in the sea. Rev. Geophys., 1968, 6(4): 447-472.

    [7]

    Kroll J. The propagation of wind-generated inertial oscillations from the surface into the deep ocean. J. Mar. Res., 1975, 33: 15-51.

    [8]

    Mihaly S F, Thomson R E, Rabinovich A B. Evidence for nonlinear interaction between internal waves of inertial and semidiurnal frequency. Geophys. Res. Lett., 1998, 25(8): 1205-1208.

    [9]

    van Haren H, Maas L, Zimmerman J T F, et al. Strong inertial currents and marginal internal wave stability in the central North Sea. Geophys. Res. Lett., 1999, 26(19): 2993-2996.

    [10]

    van Haren H, Maas L, Van Aken H. On the nature of internal wave spectra near a continental slope. Geophys. Res. Lett., 2002, 9(12): 1615, doi: 10.1029/2001GL014341.

    [11]

    Müller P, Briscoe M. Diapycnal mixing and internal waves. // Müller P, Henderson D eds. Dynamics of Oceanic Internal Gravity Waves, II. Proceedings "Aha Huliko" a Hawaiian Winter Workshop, Honolulu: University of Hawaii at Manoa, 1999: 289-294.

    [12]

    Alford M H. Observations of parametric subharmonic instability of the diurnal internal tide in the South China Sea. Geophys. Res. Lett., 2008, 35(15), doi: 10.1029/2008GL034720.

    [13]

    Xie X H, Shang X D, Chen G Y, et al. Variations of diurnal and inertial spectral peaks near the bi-diurnal critical latitude. Geophys. Res. Lett., 2009, 36(2), doi: 10.1029/2008GL036383.

    [14]

    Hibiya T, Nagasawa M. Latitudinal dependence of diapycnal diffusivity in the thermocline estimated using a finescale parameterization. Geophys. Res. Lett., 2004, 31(1), doi 10.1029/2003GL017998.

    [15]

    van Haren H. Tidal and near-inertial peak variations around the diurnal critical latitude. Geophys. Res. Lett., 2005, 32(23), doi: 10.1029/2005GL024160.

    [16]

    Kunze E, Firing E, Hummon J, et al. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 2006, 36(8): 1553-1576.

    [17]

    Alford M H, MacKinnon J A, Zhao Z X, et al. Internal waves across the Pacific. Geophys. Res. Lett., 2007, 34(24), doi: 10.1029/2007GL031566.

    [18]

    Jiang X P, Zhong Z, Jiang J. Upper ocean response of the South China Sea to typhoon Krovanh (2003). Dynamics of Atmospheres and Oceans, 2003, 47(1-3): 165-175.

    [19]

    Gonella J. A rotary-component method for analysing meteorological and oceanographic vector time series. Deep-Sea Research and Oceanographic Abstracts, 1972, 19(12): 833-846.

    [20]

    van Haren H, Millot C. Rectilinear and circular inertial motions in the Western Mediterranean Sea. Deep-Sea Research I: Ceanographic Research Papers, 2004, 51(11):1441-1455.

    [21]

    van Haren H. Inertial and tidal shear variability above Reykjanes Ridge. Deep-Sea Research I: Ceanographic Research Papers, 2007, 54(6): 856-870.

    [22]

    Davies A M, Xing J X. On the interaction between internal tides and wind-induced near-inertial currents at the shelf edge. J. Geophys. Res., 2003, 108(C3): 3099, doi: 10.1029/2002JC001375.

    [23]

    Müller P, Holloway G, Henyey F, et al. Nonlinear interactions among internal gravity waves. Rev. Geophys., 1986, 24(3): 493-536.

    [24]

    Gregg M C. Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 1989, 94(C7): 9686-9698.

  • 加载中
计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2012-04-25
修回日期:  2013-01-04
上线日期:  2013-02-20

目录