The Relationship between Melt Season Sea Ice over the Bering Sea and Summer Precipitation over Mid-Latitude East Asia |
| |
Authors: | Yurun TIAN Yongqi GAO Dong GUO |
| |
Affiliation: | Nansen-Zhu International Research Centre, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing 100029, China;University of Chinese Academy of Sciences, Beijing 100049, China;Nansen Environmental and Remote Sensing Centre/Bjerknes Centre for Climate Research, Bergen N-5006, Norway;Climate Change Research Centre, Chinese Academy of Sciences, Beijing, 100029, China |
| |
Abstract: | Independent datasets consistently indicate a significant correlation between the sea ice variability in the Bering Sea during melt season and the summer rainfall variability in the Lake Baikal area and Northeastern China. In this study, four sea ice datasets(Had ISST1, Had ISST2.2, ERA-Interim and NOAA/NSIDC) and two global precipitation datasets(CRU V4.01 and GPCP V2.3) are used to investigate co-variations between melt season(March-April-May-June, MAMJ)Bering Sea ice cover(BSIC) and summer(June-July-August, JJA) East Asian precipitation. All datasets demonstrate a significant correlation between the MAMJ BSIC and the JJA rainfall in Lake Baikal-Northeastern China(Baikal-NEC).Based on the reanalysis datasets and the numerical sensitivity experiments performed in this study using Community Atmospheric Model version 5(CAM5), a mechanism to understand how the MAMJ BSIC influences the JJA Baikal-NEC rainfall is suggested. More MAMJ BSIC triggers a wave train and causes a positive sea level pressure(SLP) anomaly over the North Atlantic during MAMJ. The high SLP anomaly, associated with an anti-cyclonic wind stress circulation anomaly,favors the appearance of sea surface temperature(SST) anomalies in a zonal dipole-pattern in the North Atlantic during summer. The dipole SST anomaly drives a zonally orientated wave train, which causes a high anomaly geopotential height at 500 h Pa over the Sea of Japan. As a result, the mean East Asian trough moves westward and a low geopotential height anomaly occurs over Baikal-NEC. This prevailing regional low pressure anomaly together with enhanced moisture transport from the western North Pacific and convergence over Baikal-NEC, positively influences the increased rainfall in summer. |
| |
Keywords: | Bering Sea ice North Atlantic SST East Asian summer precipitation wave train |
本文献已被 CNKI 万方数据 等数据库收录! |
| 点击此处可从《大气科学进展》浏览原始摘要信息 |
|
点击此处可从《大气科学进展》下载全文 |
|