-
摘要:
传统的伪谱(PS)方法,采用傅里叶变换(FT)计算空间导数具有很高的精度,每个波长仅需要两个采样点,而时间导数采用有限差分(FD)近似因而精度较低.当采用大时间步长时,由于时空精度不平衡,PS法存在不稳定性问题.原始的k-space方法可以有效地克服这些问题但是却无法适用于非均匀介质.为了提高原始k-space方法模拟非均匀介质波动方程的精度,我们提出了一种新的k-space算子族.它是用非均匀介质的变速度代替原k-space算子中的常数补偿速度构造得到,引入低秩近似可以高效求解.我们将构造的新的k-space算子应用于耦合的二阶位移波动方程,而不是交错网格一阶速度应力波动方程,使模拟弹性波的计算存储量减少.我们从数学上证明了基于二阶波动方程的k-space方法与基于一阶波动方程的k-space方法是等价的.数值模拟实验表明,与传统的PS、交错网格PS和原始的k-space方法相比,我们的新方法可以在时间和空间步长较大的均匀和非均匀介质中,为弹性波的传播提供更精确的数值解.在保持稳定性和精度的同时,采用较大的时空采样间隔,可以大大降低数值模拟的计算成本.
Abstract:The traditional Pseudo-Spectral (PS) method achieve an accurate spatial approximation with only two points required per wavelength, whereas it has low accuracy in temporal approximation because using FD approximation. This unbalanced scheme of the PS method has temporal dispersion and instability problems when a large time step is used. The original k-space method can effectively overcome these problems; however, it is not suitable for seismic modeling in heterogeneous media and requires a large memory. To solve this problem, we have developed a new family of k-space operators which are constructed by replacing the constant compensation velocity in the original k-space operators with the variable velocity of heterogeneous media. A low-rank approximation is introduced to obtain solutions at a high efficiency. To deal with the large memory requirement, the constructed k-space operators are applied to the second-order displacement wave equations instead of the first-order velocity-stress wave equations on the staggered grid, which reduces the computational memory. We mathematically demonstrate that this k-space scheme based on the second-order wave equations is equivalent to the original one based on the first-order wave equations. Numerical modeling experiments show that this new scheme can provide analytical and more accurate solutions for acoustic and elastic wave propagation in homogeneous and heterogeneous media with large time and space steps compared with the traditional PS, staggered grid PS and k-space methods. By using larger temporal sampling intervals while maintaining the stability and accuracy, this scheme can greatly reduce the computational cost for long-time modeling.
-
Key words:
- k-space operator /
- Low-rank approximation /
- Wave propagation /
- Heterogeneous media
-
-
-
Alford R M, Kelly K R, Boore D M. 1974. Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics, 39(6):834-842. http://cn.bing.com/academic/profile?id=89baa2545e7d98ac89b8347fcedfbb3b&encoded=0&v=paper_preview&mkt=zh-cn
Cerjan C, Kosloff D, Kosloff R, et al. 1985. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 50(4):705-708. http://cn.bing.com/academic/profile?id=01d5d8a566e371bb5eec2024af91e6a0&encoded=0&v=paper_preview&mkt=zh-cn
Chen H M, Zhou H, Zhang Q C, et al. 2016. A k-space operator-based least-squares staggered-grid finite-difference method for modeling scalar wave propagation. Geophysics, 81(2):T45-T61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b8bf479e53aab3c1c4c17755ade213ba
Chen H M, Zhou H, Zhang Q C, et al. 2017. Modeling elastic wave propagation using K-space operator-based temporal high-order staggered-grid finite-difference method. IEEE Transactions on Geoscience and Remote Sensing, 55(2):801-815. doi: 10.1109/TGRS.2016.2615330
Chen J B. 2007. High-order time discretizations in seismic modeling. Geophysics, 72(5):SM115-SM122. http://cn.bing.com/academic/profile?id=5108f6fad429cdbd1d135cd1b6784597&encoded=0&v=paper_preview&mkt=zh-cn
Chu C L, Stoffa P L. 2011. Application of normalized pseudo-Laplacian to elastic wave modeling on staggered grids. Geophysics, 76(5):T113-T121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2eb3cd3300df95981b7f228e4a068444
Chu C L, Stoffa P L. 2012. Determination of finite-difference weights using scaled binomial windows. Geophysics, 77(3):W17-W26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=45e3613a7aee9792049003fd6ee4211b
Dablain M A. 1986. The application of high-order differencing to the scalar wave equation. Geophysics, 51(1):54-66. http://cn.bing.com/academic/profile?id=72e36915c7a87249dcb85ed53dbecfeb&encoded=0&v=paper_preview&mkt=zh-cn
Du Q Z, Guo C F, Zhao Q, et al. 2017. Vector-based elastic reverse time migration based on scalar imaging condition. Geophysics, 82(2):S111-S127. http://cn.bing.com/academic/profile?id=dd4e93bcee7a5197b59134fae5a278b4&encoded=0&v=paper_preview&mkt=zh-cn
Du X, Fowler P J, Fletcher R. 2013. Recursive integral time-extrapolation methods for waves:A comparative review. Geophysics, 79(1):T9-T26. http://cn.bing.com/academic/profile?id=e6c49226a45d0750b9e542715944eaff&encoded=0&v=paper_preview&mkt=zh-cn
Etgen J T, Brandsberg-Dahl S. 2009. The pseudo-analytical method: application of pseudo-Laplacians to acoustic and acoustic anisotropic wave propagation.//79th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 2552-2556.
Fang G, Fomel S, Du Q Z, et al. 2014. Lowrank seismic-wave extrapolation on a staggered grid. Geophysics, 79(3):T157-T168. http://cn.bing.com/academic/profile?id=0590169430beb2abd305f04d10257fb7&encoded=0&v=paper_preview&mkt=zh-cn
Firouzi K, Cox BT, Treeby BE, et al. 2012. A first-order k-space model for elastic wave propagation in heterogeneous media. The Journal of the Acoustical Society of America, 132(3):1271-1283. doi: 10.1121/1.4730897
Firouzi K, Khuri-Yakub B T. 2017. A k-space pseudospectral method for elastic wave propagation in heterogeneous anisotropic media. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 64(4):749-760. doi: 10.1109/TUFFC.2017.2653063
Fomel S, Ying L X, Song X L. 2013. Seismic wave extrapolation using lowrank symbol approximation. Geophysical Prospecting, 61(3):526-536. doi: 10.1111/j.1365-2478.2012.01064.x
Fornberg B. 1975. On a fourier method for the integration of hyperbolic equations. Siam Journal on Numerical Analysis, 12(4):509-528. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c2364c36fb8dc1aadff1cbf2f2431440
Fornberg B. 1987. The pseudospectral method:Comparisons with finite differences for the elastic wave equation. Geophysics, 52(4):483-501. http://cn.bing.com/academic/profile?id=c8b086450219db4606f4be7b5ed2652e&encoded=0&v=paper_preview&mkt=zh-cn
Fornberg B. 1990. High-order finite differences and the pseudospectral method on staggered grids. Siam Journal on Numerical Analysis, 27(4):904-918. http://cn.bing.com/academic/profile?id=6611f7ecb80079e2bfc44ecf54765bb9&encoded=0&v=paper_preview&mkt=zh-cn
Fowler P J, Du X, Fletcher R. 2010. Recursive integral time extrapolation methods for scalar waves.//80th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 3210-3215.
Gazdag J. 1981. Modeling of the acoustic wave equation with transform methods. Geophysics, 46(6):854-859. http://cn.bing.com/academic/profile?id=22341347e45ff50feaafb6cdeff0c42b&encoded=0&v=paper_preview&mkt=zh-cn
Gong X F, Du Q Z, Zhao Q, et al. 2017. Pseudo-analytical finite-difference elastic wave extrapolation based on k-space method. Geophysics, 83(1):1-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a5916c614733e1f697d92c21eeda3ac5
Graves R W. 1996. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bulletin of the Seismological Society of America, 86(4):1091-1106. http://cn.bing.com/academic/profile?id=9f106768d96c87d9d4cd0c61d2577baa&encoded=0&v=paper_preview&mkt=zh-cn
Han D, Du Q Z, Fang G. 2016. Elastic wave propagation on a staggered-grid using lowrank finite-difference method.//86th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 3900-3904.
Hu T, Liu H, Feng H X, et al. 2017. Comparison of two staggered-grid finite-difference schemes for elastic wave propagation in anisotropic media on GPU devices.//87th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts.
Hu W, Hu C S, Liu Y N. 2016. A new time-space domain dispersion-relation-based implicit staggered-grid finite-difference scheme for scalar wave-equation modeling.//86th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts.
Kelly K R, Ward R W, Treitel S, et al. 1976. Synthetic seismograms; a finite-difference approach. Geophysics, 41(1):2-27. http://cn.bing.com/academic/profile?id=6bc9412c61a95b663a1dc576ef1ff3a9&encoded=0&v=paper_preview&mkt=zh-cn
Komatitsch D, Tromp J. 2003. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophysical Journal International, 154(1):146-153. doi: 10.1046/j.1365-246X.2003.01950.x
Komatitsch D, Vilotte J P. 1998. The spectral element method:An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88(2):368-392. http://cn.bing.com/academic/profile?id=00713e0005773acc66451b87ee9522aa&encoded=0&v=paper_preview&mkt=zh-cn
Kosloff D D, Baysal E. 1982. Forward modeling by a Fourier method. Geophysics, 47(10):1402-1412. doi: 10.1190/1.1441288
Kosloff D D, Filho A Q, Tessmer E, et al. 1989. Numerical solution of the acoustic and elastic wave equations by a new rapid expansion method. Geophysical Prospecting, 37(4):383-394. doi: 10.1111/j.1365-2478.1989.tb02212.x
Li X B, Bo J S, Qi W H, et al. 2014. Spectral element method in seismic ground motion simulation. Progress in Geophysics(in Chinese), 29(5):2029-2039, doi:10.6038/pg20140506.
Liu Q H. 1995. Generalization of the k-space formulation to elastodynamic scattering problems. Journal of the Acoustical Society of America, 97(3):1373-1379. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=95cc5c36718d09f560c8dcf9f519b1b1
Liu Y. 2014. Optimal staggered-grid finite-difference schemes based on least-squares for wave equation modelling. Geophysical Journal International, 197(2):1033-1047. doi: 10.1093/gji/ggu032
Liu Y, Sen M K. 2009a. An implicit staggered-grid finite-difference method for seismic modelling. Geophysical Journal International, 179(1):459-474. doi: 10.1111/j.1365-246X.2009.04305.x
Liu Y, Sen M K. 2009b. A new time-space domain high-order finite-difference method for the acoustic wave equation. Journal of Computational Physics, 228(23):8779-8806. doi: 10.1016/j.jcp.2009.08.027
Loewenthal D, Wang C J, Johnson O G, et al. 1991. High order finite difference modeling and reverse time migration. Exploration Geophysics, 22(3):533-545. http://cn.bing.com/academic/profile?id=026df51c2f4c1bcc2c49cbc4fa4ed791&encoded=0&v=paper_preview&mkt=zh-cn
Madariaga R. 1976. Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66(3):639-666. http://cn.bing.com/academic/profile?id=a34662ac7a5d4ab723a8d19a7846fdba&encoded=0&v=paper_preview&mkt=zh-cn
Marfurt K J. 1984. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics, 49(5):533-549. http://cn.bing.com/academic/profile?id=7975057c16debeab0e919d6e22d7e8d4&encoded=0&v=paper_preview&mkt=zh-cn
Mast T D, Souriau L P, Liu D L D, et al. 2001. A k-space method for large-scale models of wave propagation in tissue. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 48(2):341-354. doi: 10.1109/58.911717
Saenger E H, Gold N, Shapiro S A. 2000. Modeling the propagation of elastic waves using a modified finite-difference grid. Wave Motion, 31(1):77-92. doi: 10.1016/S0165-2125(99)00023-2
Song X L, Fomel S, Ying L X. 2013. Lowrank finite-differences and lowrank fourier finite-differences for seismic wave extrapolation in the acoustic approximation. Geophysical Journal International, 193(2):960-969. doi: 10.1093/gji/ggt017
Soubaras R, Zhang Y. 2008. Two-step explicit marching method for reverse time migration.//78th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 2272-2276.
Stoffa P L, Pestana R C. 2009. Numerical solution of the acoustic wave equation by the rapid expansion method (REM) - A one step time evolution algorithm.//79th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 2672-2676.
Sun J Z, Fomel S, Sripanich Y, et al. 2017. Recursive integral time extrapolation of elastic waves using low-rank symbol approximation. Geophysical Journal International, 211(3):1478-1493. doi: 10.1093/gji/ggx386
Tabei M, Mast T D, Waag R C. 2002. A k-space method for coupled first-order acoustic propagation equations. The Journal of the Acoustical Society of America, 111(1):53-63. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=95bad2a7488d120be4085ed15a17f67f
Tal-Ezer H, Kosloff D, Koren Z. 1987. An accurate scheme for seismic forward modelling. Geophysical Prospecting, 35(5):479-490. doi: 10.1111/j.1365-2478.1987.tb00830.x
Tan S R, Huang L J. 2014. A staggered-grid finite-difference schemeoptimized in the time-space domain for modeling scalar-wave propagation in geophysical problems. Journal of Computational Physics, 276:613-634. doi: 10.1016/j.jcp.2014.07.044
Tarantola A. 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8):1259-1266. doi: 10.1190/1.1441754
Virieux J. 1986. P-SV wave propagation in heterogeneous media; Velocity-stress finite-difference method. Geophysics, 51(4):889-901. http://cn.bing.com/academic/profile?id=e1a6f46ce05751ce7bdcbb75a76899c5&encoded=0&v=paper_preview&mkt=zh-cn
Yuan Y X, Hu T, Wang Z Y, et al. 2018. Solving second-order decoupled elastic wave equation using low-rank decomposition and low-rank finite differences Chinese Journal of Geophysics(in Chinese), 61(8):3324-3333, doi:10.6038/cjg2018L0257.
Yuan Y X, Liu H, Hu T, et al. 2017. A new staggered-grid scheme for decoupled elastic-wave modeling based on low-rank finite-difference method. 87th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 4164-4168.
Zhang J H, Yao Z X. 2013. Optimized explicit finite-difference schemes for spatial derivatives using maximum norm. Journal of Computational Physics, 250:511-526. doi: 10.1016/j.jcp.2013.04.029
Zhang Y, Zhang G Q. 2009. One-step extrapolation method for reverse time migration. Geophysics, 74(4):A29-A33. http://cn.bing.com/academic/profile?id=b4be9a7d139977e74824a0e19d257510&encoded=0&v=paper_preview&mkt=zh-cn
李孝波, 薄景山, 齐文浩等. 2014.地震动模拟中的谱元法.地球物理学进展, 29(5):2029-2039, doi:10.6038/pg20140506.
袁雨欣, 胡婷, 王之洋等. 2018.求解二阶解耦弹性波方程的低秩分解法和低秩有限差分法.地球物理学报, 61(8):3324-3333, doi:10.6038/cjg2018L0257. http://www.geophy.cn//CN/abstract/abstract14634.shtml
-