高海拔山区草地物候提取方法对比分析

马勇刚, 黄粤, 肖正清

马勇刚, 黄粤, 肖正清. 高海拔山区草地物候提取方法对比分析[J]. 武汉大学学报 ( 信息科学版), 2022, 47(5): 753-761. DOI: 10.13203/j.whugis20190469
引用本文: 马勇刚, 黄粤, 肖正清. 高海拔山区草地物候提取方法对比分析[J]. 武汉大学学报 ( 信息科学版), 2022, 47(5): 753-761. DOI: 10.13203/j.whugis20190469
MA Yonggang, HUANG Yue, XIAO Zhengqing. Comparative Analysis of Phenological Extraction Methods for Grasslands in High-Altitude Mountainous Areas[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 753-761. DOI: 10.13203/j.whugis20190469
Citation: MA Yonggang, HUANG Yue, XIAO Zhengqing. Comparative Analysis of Phenological Extraction Methods for Grasslands in High-Altitude Mountainous Areas[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 753-761. DOI: 10.13203/j.whugis20190469

高海拔山区草地物候提取方法对比分析

基金项目: 

国家自然科学基金 41761013

新疆维吾尔自治区高校科研计划 XJEDU2017M007

新疆维吾尔自治区自然科学基金 2019D01C022

详细信息
    作者简介:

    马勇刚,博士,教授,主要从事植物物候研究。mayg@xju.edu.cn

    通讯作者:

    肖正清,博士。xiaozq@xju.edu.cn

  • 中图分类号: P237

Comparative Analysis of Phenological Extraction Methods for Grasslands in High-Altitude Mountainous Areas

Funds: 

The National Natural Science Foundation of China 41761013

the Research Project of the Higher Education Institutions of the Xinjiang Uygur Autonomous Region of China XJEDU2017M007

the Natural Science Foundation of the Xinjiang Uygur Auton‍omous Region of China 2019D01C022

More Information
    Author Bio:

    MA Yonggang, PhD, professor, specializes in remote sensing and phenology. E-mail: mayg@xju.edu.cn

    Corresponding author:

    XIAO Zhengqing, PhD. E-mail: xiaozq@xju.edu.cn

  • 摘要: 准确量测高海拔山区的植物物候对理解全球变化下的敏感生态系统的响应具有重要意义。利用物候相机和遥感技术开展物候信息的提取和对比,既能准确评估物候相机在山区植物物候提取的性能,又可为山区遥感物候数据反演提供重要参考。利用中国新疆维吾尔自治区天山山区人工观测、物候相机和遥感数据,测试了5种曲线拟合方式与4种物候参数提取方法的20种组合的物候参数提取结果,对比了3种数据在物候信息提取结果的异同。结果表明:(1)植物物候相机能在天山山区草地物候观测中提供高时间分辨率的绿度变化信息,是山区开展物候观测并验证遥感物候数据的有效手段。(2)山区雨雪天气等对相对绿度指数产生较强噪声影响,需要选择合适的滤波器进行去噪。(3)曲线拟合方式和物候提取方法均对物候参数数值产生影响。而提取方法可产生更明显的差异性,其中,阈值法和导数法提取的物候数值相近,开始期与人工观测的返青期一致性较好,停止期与枯黄期一致性较好;而Klosterman方法和Gu方法提取物候数值相近,提取的开始期与人工观测的返青末期一致性较好,停止期与人工观测的枯黄末期一致性较好。(4)20种不同滤波+提取方法的组合形式在山区遥感数据物候信息提取的有效性仅为48%,中分辨率成像光谱仪数据的最有效提取方法为Beck+Derivatives组合,可见光红外成像辐射套件数据的最优提取方法为Beck+Threshold组合和Elmore+Derivatives组合。
    Abstract:
      Objectives  Accurate measurement of vegetation phenology in high-altitude mountainous areas is critical in understanding the response of sensitive ecosystems to global climate change. The extraction and comparison of the phenological information using phenological cameras (PhenoCams) and remote sens‍ing technology can help evaluate the performance of PhenoCams in vegetation phenology extraction, which provides an important reference for the accuracy of remote sensing phenological data in mountainous areas.
      Methods  Firstly, the green chromatic coordinates (GCC) and normalization difference vegetation index (NDVI) of the vegetation are extracted for characterizing the profile of vegetation annual change based on the observed data from four PhenoCams stations and the remote sensing data in the Bayanbulak region of the Xinjiang Uygur Autonomous Region, China. Secondly, the denoising performance of seven filters for green index signals is comprehensively investigated. The phenological parameters extracted by 20 combinations of five curve fitting meth‍ods and four phenological parameter extraction methods are compared and analyzed.
      Results  (1) Vegetation PhenoCams can accurately provide high temporal resolution variation of GCC information of grasslands (including sparse vegetation types) in Tianshan mountainous areas, China, and they are effective means to observe mountain phenology and verify remote sensing phenology data. (2) Weather conditions such as rain and snow have a strong impact on GCC, and therefore it is necessary to select appropriate filters for denois‍ing. (3) ‍Curve fitting methods and phenological extraction methods have an important impact on the val‍ues of phenological parameters. Moreover, obvious differences exist between the extraction meth‍ods. The phenological values extracted by Threshold and Derivatives methods are similar, and the extraction start and stop peri‍ods can well match the artificially observed periods of rejuvenation and withering respectively. The phenological values extracted by the Klosterman method and Gu method are similar, which are consistent with the observations. (4)The effectiveness of 20 combinations in extract‍ing phenological information from remote sensing data in mountainous areas is only 48%. The most effective extraction method for moderate resolution imaging spectroradiometer (MODIS) data is the combination of Beck+Derivatives, and the best extraction methods for visible infrared imaging radiometer suite (VIIRS) data are the combination of Beck + Threshold and that of Elmore + Derivatives.
      Conclusions  PhenoCams data and remote sensing data have obvious differences in spatial and temporal scale, and the PhenoCams data provide a higher temporal resolution than the remote sensing data. Moreover, the PhenoCams data are less affected by weath‍er conditions, and thus the signal pollution caused by weather conditions can be reduced. Regulating the operational PhenoCams observation and expanding the spectral observation range of PhenoCams will improve the extraction of phenological information and help validate remote sensing phenological information. All of this certainly can help build a stable and long-term scientific data set for vegetation observations.
  • 图  1   研究区观测站点分布

    Figure  1.   Phenocams Sites in Study Area

    图  2   遥感NDVI数据与物候相机GCC数据对比

    Figure  2.   Comparison Between Remotely Sensed NDVI Data and Phenocams GCC Data

    图  3   物候相机GCC不同曲线拟合方法与参数提取方法组合结果对比图

    Figure  3.   Comparison of Five Growth Curve Fitting Methods and Four Phenological Parameter Extraction Methods for Different Vegetation Types Based on Phenocams GCC

    图  4   不同曲线拟合方法的物候参数分布

    Figure  4.   Comparison of Phenological Parameters of Five Curve Fitting Methods

    图  5   不同参数提取方法的物候参数分布

    Figure  5.   Comparison of Phenological Parameters of Four Extraction Methods

    图  6   遥感NDVI数据不同曲线拟合方法与参数提取方法组合结果对比图

    Figure  6.   Comparison of Five Growth Curve Fitting Methods and Four Phenological Parameter Extraction Methods Based on MODIS and VIIRS Data

    表  1   4个站点人工观测物候期

    Table  1   In-Situ Phenological Data of Four Stations

    物候期分类 站点名称
    察汗乌苏 骆驼脖子 水电站 胜利道班
    返青初期 05-09 04-23 05-26 05-28
    返青普遍期 05-31 05-07 06-04 06-05
    返青末期 06-16 05-11 06-12 06-14
    枯黄初期 09-20 09-05 09-01 08-10
    枯黄普遍期 09-30 09-16 09-10 08-26
    枯黄末期 10-19 09-25 09-20 09-01
    下载: 导出CSV

    表  2   遥感与数字相机物候参数相关分析

    Table  2   Correlated Analysis of Phenological Parameters Extract‍ed from Remote Sensing Data and Phenocams

    物候参数分类 开始期 停止期
    MODIS VIIRS MODIS VIIRS
    GCC 0.628 6** 0.574** 0.063 0.444**
    MODIS或VIIRS 0.278 0.400*
    注:*对应5%水平显著,即p < 0.05;**对应1%水平显著,即p < 0.01
    下载: 导出CSV
  • [1]

    Peñuelas J, Rutishauser T, Filella I E. Phenology Feedbacks on Climate Change[J]. Science, 2009, 324(5929): 887-888 doi: 10.1126/science.1173004

    [2]

    Richardson A D, Keenan T F, Migliavacca M, et al. Climate Change, Phenology, and Phenologcal Control of Vegetation Feedbacks to the Climate System[J]. Agricultural and Forest Meteorology, 2013, 169: 156-173 doi: 10.1016/j.agrformet.2012.09.012

    [3]

    Liu Q, Fu Y H, Zeng Z Z, et al. Temperature, Prcipitation, and Insolation Effects on Autumn Vegettion Phenology in Temperate China[J]. Global Change Biology, 2016, 22(2): 644-655 doi: 10.1111/gcb.13081

    [4]

    Shen M G, Tang Y H, Chen J, et al. Influences of Temperature and Precipitation Before the Growing Season on Spring Phenology in Grasslands of the Central and Eastern Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2011, 151 (12): 1711-1722 doi: 10.1016/j.agrformet.2011.07.003

    [5]

    Huxman T E, Snyder K A, Tissue D, et al. Precipittion Pulses and Carbon Fluxes in Semiarid and Arid Ecosystems[J]. Oecologia, 2004, 141(2): 254-268 doi: 10.1007/s00442-004-1682-4

    [6]

    Yao R, Wang L C, Huang X, et al. Investigation of Urbanization Effects on Land Surface Phenology in Northeast China During 2001-2015[J]. Remote Sensing, 2017, 9(1): 66 doi: 10.3390/rs9010066

    [7]

    Yao R, Wang L C, Huang X, et al. Increased Sptial Heterogeneity in Vegetation Greenness Due to Vegetation Greening in Mainland China[J]. Ecologcal Indicators, 2019, 99: 240-250 doi: 10.1016/j.ecolind.2018.12.039

    [8]

    Cory S T, Wood L K, Neufeld H S. Phenology and Growth Responses of Fraser Fir (Abies Fraseri) Christmas Trees Along an Elevational Gradient Southern Appalachian Mountains, USA[J]. Agrcultural and Forest Meteorology, 2017, 243: 25-32 doi: 10.1016/j.agrformet.2017.05.003

    [9]

    Cremonese E, Filippa G, Galvagno M, et al. Heat Wave Hinders Green Wave: The Impact of Climate Extreme on the Phenology of a Mountain Grassland [J]. Agricultural and Forest Meteorology, 2017, 247: 320-330 doi: 10.1016/j.agrformet.2017.08.016

    [10]

    Zhang X Y, Jayavelu S, Liu L L, et al. Evaluation of Land Surface Phenology from VⅡRS Data Using Time Series of PhenoCam Imagery[J]. Agricutural and Forest Meteorology, 2018, 256/257: 137-149 doi: 10.1016/j.agrformet.2018.03.003

    [11]

    Sonnentag O, Hufkens K, Teshera-Sterne C, et al. Digital Repeat Photography for Phenological Rsearch in Forest Ecosystems[J]. Agricultural and Forest Meteorology, 2012, 152: 159-177 doi: 10.1016/j.agrformet.2011.09.009

    [12]

    Migliavacca M, Galvagno M, Cremonese E, et al. Using Digital Repeat Photography and Eddy Cvariance Data to Model Grassland Phenology and Photosynthetic CO2 Uptake[J]. Agricultural and Forest Meteorology, 2011, 151(10): 1325-1337 doi: 10.1016/j.agrformet.2011.05.012

    [13]

    Papale D, Reichstein M, Aubinet M, et al. Twards a Standardized Processing of Net Ecosystem Exchange Measured with Eddy Covariance Tecnique: Algorithms and Uncertainty Estimation[J]. Biogeosciences, 2006, 3(4): 571-583 doi: 10.5194/bg-3-571-2006

    [14]

    Julitta T, Cremonese E, Migliavacca M, et al. Using Digital Camera Images to Analyse Snowmelt and Phenology of a Subalpine Grassland[J]. Agrcultural and Forest Meteorology, 2014, 198/199: 116-125 doi: 10.1016/j.agrformet.2014.08.007

    [15]

    Filippa G, Cremonese E, Migliavacca M, et al. Phenopix: A R Package for Image-Based Vegettion Phenology[J]. Agricultural and Forest Meterology, 2016, 220: 141-150 doi: 10.1016/j.agrformet.2016.01.006

    [16]

    McEwan R W, McCarthy B C. Phenology: An Itegrative Environmental Science[J]. The Journal of the Torrey Botanical Society, 2005, 132(1): 170-171 doi: 10.3159/1095-5674(2005)132[170:PAIES]2.0.CO;2

    [17]

    Beck P S A, Atzberger C, Høgda K A, et al. Iproved Monitoring of Vegetation Dynamics at very High Latitudes: A New Method Using MODIS ND- VI[J]. Remote Sensing of Environment, 2006, 100 (3): 321-334 doi: 10.1016/j.rse.2005.10.021

    [18]

    Gu L H, Post W M, Baldocchi D D, et al. Charaterizing the Seasonal Dynamics of Plant Community Photosynthesis Across a Range of Vegetation Types [M]//Noormets A. Phenology of Ecosystem Prcesses. New York, USA: Springer, 2009

    [19]

    Elmore A J, Guinn S M, Minsley B J, et al. Lanscape Controls on the Timing of Spring, Autumn, and Growing Season Length in Mid-Atlantic Forests [J]. Global Change Biology, 2012, 18 (2): 656-674 doi: 10.1111/j.1365-2486.2011.02521.x

    [20]

    Klosterman S T, Hufkens K, Gray J M, et al. Evaluating Remote Sensing of Deciduous Forest Phenology at Multiple Spatial Scales Using PhenCam Imagery[J]. Biogeosciences, 2014, 11(16): 4305-4320 doi: 10.5194/bg-11-4305-2014

    [21]

    Jönsson P, Eklundh L. TIMESAT: A Program for Analyzing Time-Series of Satellite Sensor Data[J]. Computers & Geosciences, 2004, 30(8): 833-845

    [22]

    Zhang X Y, Friedl M A, Schaaf C B, et al. Montoring Vegetation Phenology Using MODIS[J]. Rmote Sensing of Environment, 2003, 84 (3): 471-475 doi: 10.1016/S0034-4257(02)00135-9

    [23] 周玉科. 基于数码照片的植被物候提取多方法比较研究[J]. 地理科学进展, 2018, 37(8): 1031-1044 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201808003.htm

    Zhou Yuke. Comparative Study of Vegetation Phnology Extraction Methods Based on Digital Images [J]. Progress in Geography, 2018, 37(8): 1031- 1044 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201808003.htm

    [24] 甘文霞, 沈焕锋, 张良培, 等. 采用6S模型的多时相MODIS植被指数NDVI归一化方法[J]. 武汉大学学报·信息科学版, 2014, 39(3): 300-304 doi: 10.13203/j.whugis20120731

    Gan Wenxia, Shen Huanfeng, Zhang Liangpei, et al. Normalization of Multi-temporal MODIS ND- VI Based on 6S Radiative Transfer Model[J]. Gematics and Information Science of Wuhan Universty, 2014, 39(3): 300-304 doi: 10.13203/j.whugis20120731

图(6)  /  表(2)
计量
  • 文章访问数:  993
  • HTML全文浏览量:  248
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-15
  • 发布日期:  2022-05-04

目录

    /

    返回文章
    返回