祁连山地区大气水循环研究(Ⅱ):水循环过程分析

张良, 张强, 冯建英, 白虎志, 赵建华, 徐晓华

冰川冻土 ›› 2014, Vol. 36 ›› Issue (5) : 1092-1100.

PDF(2156 KB)
PDF(2156 KB)
冰川冻土 ›› 2014, Vol. 36 ›› Issue (5) : 1092-1100. DOI: 10.7522/j.issn.1000-0240.2014.0131  CSTR: 32264.14.j.issn.1000-0240.2014.0131
冰冻圈与全球变化

祁连山地区大气水循环研究(Ⅱ):水循环过程分析

  • 张良1,2,3, 张强1,2,3, 冯建英2,3, 白虎志2,3, 赵建华2,3, 徐晓华4
作者信息 +

A study of atmospheric water cycle over the Qilian Mountains (Ⅱ): Analysis of hydrological cycle

  • ZHANG Liang1,2,3, ZHANG Qiang1,2,3, FENG Jianying2,3, BAI Huzhi2,3, ZHAO Jianhua2,3, XU Xiaohua4
Author information +
文章历史 +

摘要

在前文对祁连山地区水汽输送进行分析的基础上, 应用刘国纬的水文循环大气过程模型, 研究了同期祁连山地区的大气水循环变化特征. 结果表明: 祁连山地区区域总降水量在过去51 a中表现为缓慢增加的趋势, 境外输送水汽对于当地降雨的贡献呈减小趋势, 局地蒸发产生的水汽对于当地降水的贡献增加, 表现为21世纪初期由局地蒸发产生的降水量比1960年代增加33.0 mm; 水文外循环系数表现为明显的下降趋势, 表明境外输送水汽在祁连山地区水文循环中的作用降低; 与之相反, 水文内循环系数呈明显的上升趋势, 表明由蒸发产生的降水使区域水循环加强. 祁连山地区水汽滞留时间表现出明显的下降趋势, 反映出祁连山地区的水汽更新速率加快, 水汽利用效率提高. 区域温度升高是该地区蒸发量增加的主要原因之一; 区域径流量的增加是降水量增多与冰川冻土带融水共同作用的结果, 其中冰川冻土融水的作用更加明显.

Abstract

On the basis of analyzing water vapor transport, in this study, Liu's atmospheric hydrological cycle model is used to explore the characteristics of hydrological cycle in the Qilian Mountains at the same period. It is found that precipitation had increased slowly from 1960 to 2010. Precipitation contributed by water vapor input had decreased and that contributed by evaporation had increased. External hydrological cycle index had gone down. Precipitation derived from local evaporation at the beginning of the 21st century had increased 33.0 mm as compared with that in the 1960s. The index of external hydrological cycle had decreased obviously with a decreasing contribution to precipitation. On the contrary, the index of internal hydrological cycle had increased with an increasing contribution to precipitation. Retention time of water vapor had decreased significantly, indicating that the update rate of water vapor had become faster and the using efficiency of water vapor had improved. One of the main reasons of rising evaporation is air temperature rising in the Qilian Mountains. Runoff increasing is caused by precipitation increasing and increasing meltwater from glaciers and frozen soils, and the latter is more distinct than the former.

关键词

祁连山 / 水循环 / 年际变化 / 蒸发 / 径流

Key words

Qilian Mountains / hydrological cycle / annual variation / evaporation / river runoff

引用本文

导出引用
张良, 张强, 冯建英, 白虎志, 赵建华, 徐晓华. 祁连山地区大气水循环研究(Ⅱ):水循环过程分析[J]. 冰川冻土, 2014, 36(5): 1092-1100 https://doi.org/10.7522/j.issn.1000-0240.2014.0131
ZHANG Liang, ZHANG Qiang, FENG Jianying, BAI Huzhi, ZHAO Jianhua, XU Xiaohua. A study of atmospheric water cycle over the Qilian Mountains (Ⅱ): Analysis of hydrological cycle[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1092-1100 https://doi.org/10.7522/j.issn.1000-0240.2014.0131
中图分类号: P426.1   

参考文献

[1] Lu Guihua, He Hai. View of global hydrological cycle[J]. Advances in Water Science, 2006, 17(3): 419-424. [陆桂华, 何海. 全球水循环研究进展[J]. 水科学进展, 2006, 17(3): 419-424.]
[2] Xia Jun, Sun Xuetao, Tan Ge. The progress and prospect of water cycle study in western China[J]. Advances in Earth Science, 2003, 18(1): 58-67. [夏军, 孙雪涛, 谈戈. 中国西部流域水循环研究进展与展望[J]. 地球科学进展, 2003, 18(1): 58-67.]
[3] Gao Qianzhao. Characteristics of water cycle in inland river basins in Hexi region[J]. Journal of Arid Meteorology, 2003, 21(3): 21-28. [高前兆. 河西内陆河流域的水循环特征[J]. 干旱气象, 2003, 21(3): 21-28.]
[4] Liu Chunzhen. The issues in the study of climate change on the terrestrial hydrological cycle[J]. Advances in Earth Science, 2004, 19(1): 115-119. [刘春蓁. 气候变化对陆地水循环影响研究的问题[J]. 地球科学进展, 2004, 19(1): 115-119.]
[5] Liu Chunzhen. The review of impact study of climate variability and change on the water cycle[J]. Hydrology, 2003, 23(4): 1-7. [刘春蓁. 气候变异与气候变化对水循环影响研究综述[J]. 水文, 2003, 23(4): 1-7.]
[6] Zhang Qiang, Zhao Yingdong, Zhang Cunjie, et al. Issues about hydrological cycle and water resource in arid region of Northwest China[J]. Journal of Arid Meteorology, 2008, 26(2): 1-8. [张强, 赵映东, 张存杰, 等. 西北干旱区水循环与水资源问题[J]. 干旱气象, 2008, 26(2): 1-8.]
[7] Zhang Liang. Research on the Water Resources and Hydrological Cycle of the Qilian Mountains[D]. Lanzhou: Lanzhou University, 2006: 8-61. [张良. 祁连山空中水资源及水循环研究[D]. 兰州: 兰州大学, 2006: 8-61.]
[8] Zhang Liang, Wang Shigong, Shang Kezheng, et al. Research on air water resources over Qilian Mountains area[J]. Journal of Arid Meteorology, 2007, 25(1): 14-21. [张良, 王式功, 尚可政, 等. 祁连山区空中水资源研究[J]. 干旱气象, 2007, 25(1): 14-21.]
[9] Gao Yanhong, Cheng Guodong, Cui Wenrui, et al. Coupling of enhanced land surface hydrology with atmospheric mesoscale model and its implement in Heihe River basin[J]. Advances in Earth Science, 2006, 21(12): 1282-1292. [高艳红, 程国栋, 崔文瑞, 等. 陆面水文过程与大气模式的耦合及其在黑河流域中的应用[J]. 地球科学进展, 2006, 21(12): 1282-1292.]
[10] International Hydrological Programme. Water Balance of Europe: Technical Documents in Hydrology[M]. Paris: UNESCO, 1978.
[11] Liu Guowei. Atmosphere Process in Hydrological Cycle [M]. Beijing: Science Press, 1997: 25-55. [刘国纬. 水文循环的大气过程[M]. 北京: 科学出版社, 1997: 25-55.]
[12] Zhang Liang, Zhang Qiang, Feng Jianying, et al. A study of atmospheric water cycle over the Qilian Mountains (I): Variation of annual water vapor transport[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1079-1091. [张良, 张强, 冯建英, 等. 祁连山地区大气水循环研究(I): 空中水汽输送年际变化分析[J]. 冰川冻土, 2014, 36(5): 1079-1091.]
[13] Qiu Xinfa, Zeng Yan, Miao Qilong, et al. Estimation of annual actual evapotranspiration from nonsaturated land surfaces with conventional meteorological data[J]. Science in China (Series D: Earth Sciences), 2004, 47(3): 239-246. [邱新法, 曾燕, 缪启龙, 等. 用常规气象资料计算陆面年实际蒸散量[J]. 中国科学(D辑: 地球科学), 2003, 33(3): 281-288.]
[14] Cong Zhentao, Ni Guangheng, Yang Dawen, et al. Evaporation paradox in China[J]. Advances in Water Science, 2008, 19(2): 147-152. [丛振涛, 倪广恒, 杨大文, 等. “蒸发悖论”在中国的规律分析[J]. 水科学进展, 2008, 19(2): 147-152.]
[15] Wang Keli, Cheng Guodong, Jiang Hao, et al. Atmospheric hydrologic cycle over the Qilian-Heihe valley[J]. Advances in Water Science, 2003, 14(1): 91-97. [王可丽, 程国栋, 江灏, 等. 祁连山-黑河流域水循环中的大气过程[J]. 水科学进展, 2003, 14(1): 91-97.]
[16] Zhou Liantong, Huang Ronghui. Characteristics of temporal and spatial variation of precipitation, evaporation and difference between precipitation and evaporation in North China[J]. Climatic and Environmental Research, 2006, 11(3): 280-296. [周连童, 黄荣辉. 华北地区降水、蒸发和降水蒸发差的时空变化特征[J]. 气候与环境研究, 2006, 11(3): 280-296.]
[17] Liu Bo, Xiao Ziniu, Ma Zhuguo. Relationship between pan evaporation and actual evaporation in different humid and arid regions of China[J]. Plateau Meteorology, 2010, 29(3): 629-636. [刘波, 肖子牛, 马柱国. 中国不同干湿区蒸发皿蒸发和实际蒸发之间关系的研究[J]. 高原气象, 2010, 29(3): 629-636.]
[18] Liu Bo, Ma Zhuguo, Ding Yuguo. Characteristics of the changes in pan evaporation over northern China during the past 45 years and the relations to environment factors[J]. Plateau Meteorology, 2006, 25(5): 840-848. [刘波, 马柱国, 丁裕国. 中国北方近45年蒸发变化的特征及与环境的关系[J]. 高原气象, 2006, 25(5): 840-848.]
[19] Wang Suping, Zhang Cunjie, Han Yongxiang. Trend of potentia1 evapotranspiration and pan evaporation and their main impact factors in different climate regions of Gansu Province[J]. Journal of Desert Research, 2009, 30(3): 675-680. [王素萍, 张存杰, 韩永翔. 甘肃省不同气候区蒸发量变化特征及其影响因子研究[J]. 中国沙漠, 2009, 30(3): 675-680.]
[20] Zuo Hongchao, Li Dongliang, Hu Yinqiao, et al. Characteristics of climatic trends and correlation between pan-evaporation and environmental factors in the last 40 years over China[J]. Chinese Science Bulletin, 2005, 50(12): 1235-1241. [左洪超, 李栋梁, 胡隐樵, 等. 近40 a中国气候变化趋势及其同蒸发皿观测的蒸发量变化的关系[J]. 科学通报, 2005, 50(11): 1125-1130.]
[21] Zhang Jie, Bai Qinghua, Ma Hongyong. Impact of climate cha-nge on the main crops in the middle region of Hexi Corridor[J]. Journal of Arid Meteorology, 2013, 31(2): 309-312. [张洁, 白青华, 马鸿勇. 气候变化对河西走廊中部地区主要农作物的影响[J]. 干旱气象, 2013, 31(2): 309-312.]
[22] Wang Wenxing, Duan Zhenghu, Wang Jianwei. Impact of climate change on runoff of Shiyang River in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 469-476. [王文行, 段争虎, 王建伟. 气候变化对祁连山石羊河出山口径流的影响[J]. 冰川冻土, 2012, 34(2): 469-476.]
[23] Ding Yongjian, Ye Baisheng, Liu Shiyin. Impact of climate change to the alpine streamflow during the past 40 a in the middle part of Qilian Mountains, Northwest China[J]. Journal of Glaciology and Geocryology, 2000, 22(3): 197-198. [丁永建, 叶柏生, 刘时银. 祁连山中部地区40 a来气候变化及其对径流的影响[J]. 冰川冻土, 2000, 22(3): 197-198.]
[24] Liu Honglan, Bai Huzhi, Zhang Junguo, et al. Climatic change and its impact on water resources in central Hexi Corridor of Gansu Province in 1957-2006[J]. Journal of Glaciology and Geocryology, 2010, 32(1): 185-187. [刘洪兰, 白虎志, 张俊国, 等. 1957-2006年河西走廊中部气候变化对水资源的影响[J]. 冰川冻土, 2010, 32(1): 185-187.]
[25] Bie Qiang, He Lei, Zhao Chuanyan. Application of fractal theory in climate change in Shiyanghe watershed[J]. Journal of Arid Meteorology, 2012, 30(1): 21-26. [别强, 何磊, 赵传燕. 基于分形方法的石羊河流域气候变化研究[J]. 干旱气象, 2012, 30(1): 21-26.]
[26] Deng Zhenyong, Zhang Qiang, Wang Runyuan, et al. A study on impacts of climate change on runoff of inland rivers and adaptive water resource managements in Hexi Corridor[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1267-1275. [邓振镛, 张强, 王润元, 等. 河西内陆河径流对气候变化的响应及其流域适应性水资源管理研究[J]. 冰川冻土, 2013, 35(5): 1267-1275.]
[27] Lan Yongchao, Lu Chengyang, La Chengfang, et al. The fact of climate shift to warm-humid in the source regions of the Yellow River and its hydrologic response[J]. Journal of Glaciology and Geocryology, 2013, 35(4): 920-928. [蓝永超, 鲁承阳, 喇承芳, 等. 黄河源区气候向暖湿转变的观测事实及其水文响应[J]. 冰川冻土, 2013, 35(4): 920-928.]
[28] Lan Yongchao, Hu Xinglin, Xiao Honglang, et al. A study of variations of water cycle factors in the mountainous area of the Heihe main river under global warming scene[J]. Advances in Earth Science, 2008, 23(7): 739-747. [蓝永超, 胡兴林, 肖洪浪, 等. 全球变暖情景下黑河山区水循环要素变化研究[J]. 地球科学进展, 2008, 23(7): 739-747.]
[29] Cheng Ying, Li Dongliang, Hu Wenchao, et al. Relationship between glacial thaw of Qilian Mountain and upper temperature[J]. Plateau Meteorology, 2002, 21(2): 217-221. [程瑛, 李栋梁, 胡文超, 等. 祁连山冰川消融与高空气温变化的关系[J]. 高原气象, 2002, 21(2): 217-221.]
[30] Li Dongliang, Feng Jianying, Chen Lei, et al. Study on interdecadal change of Heihe runoff and Qilian Mountain's climate[J]. Plateau Meteorology, 2003, 22(2): 104-110. [李栋梁, 冯建英, 陈雷, 等. 黑河流量和祁连山气候的年代际变化[J]. 高原气象, 2003, 22(2): 104-110.]
[31] Dang Suzhen, Liu Changming, Wang Zhonggen, et al. Analyses on temporal variations of snowmelt runoff time in the upper reaches of Heihe River and its climate causes[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 920-926. [党素珍, 刘昌明, 王中根, 等. 黑河流域上游融雪径流时间变化特征及成因分析[J]. 冰川冻土, 2012, 34(4): 920-926.]
[32] Shen Yongping, Su Hongchao, Wang Guoya, et al. The responses of glaciers and snow cover to climate change in Xinjiang (I): Hydrological effects[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 513-527. [沈永平, 苏宏超, 王国亚, 等. 新疆冰川、积雪对气候变化的响应(I): 水文效应[J]. 冰川冻土, 2013, 35(3): 513-527.]
[33] Zhao Tianbao, Fu Congbin. Applicability evaluation for several reanalysis datasets using the upper-air observations over China[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(3): 634-648. [赵天保, 符淙斌. 应用探空观测资料评估几类再分析资料在中国区域的适用性[J]. 大气科学, 2009, 33(3): 634-648.]
[34] Kistler R, Kalnay E, Collins W, et al. The NCEP NCAR 50-year reanalysis: Monthly means CD-ROM and documentation[J]. Bulletin of the American Meteorological Society, 2001, 82(2): 247-268.
[35] Gao Yanhong, Cheng Guodong. Several points on mass and energy interaction between land surface and atmosphere in the Heihe River basin[J]. Advances in Earth Science, 2008, 23(7): 779-784. [高艳红, 程国栋. 黑河流域陆地-大气相互作用研究的几点思考[J]. 地球科学进展, 2008, 23(7): 779-784.]
[36] Sun Yue, Li Dongliang, Zhu Yong. Advances in study about runoff variation of the Weihe River and its response to climate change and human activities[J]. Journal of Arid Meteorology, 2013, 31(2): 396-405. [孙悦, 李栋梁, 朱拥. 渭河径流变化及其对气候变化与人类活动的响应研究进展[J]. 干旱气象, 2013, 31(2): 396-405.]

基金

国家自然科学基金项目(41375019;41374036);中国气象局“气象关键技术集成与应用”项目(CAMGJ2012M51)资助
PDF(2156 KB)

3166

Accesses

0

Citation

Detail

段落导航
相关文章

/