新疆阿尔泰可可托海矿区伟晶岩成因与矿化潜力研究:来自石英SEM-CL和微量元素的指示

曹冲, 申萍, 冯浩轩, 罗耀清, 楚翔凯, 任文斌. 2024. 新疆阿尔泰可可托海矿区伟晶岩成因与矿化潜力研究:来自石英SEM-CL和微量元素的指示. 岩石学报, 40(3): 889-906. doi: 10.18654/1000-0569/2024.03.12
引用本文: 曹冲, 申萍, 冯浩轩, 罗耀清, 楚翔凯, 任文斌. 2024. 新疆阿尔泰可可托海矿区伟晶岩成因与矿化潜力研究:来自石英SEM-CL和微量元素的指示. 岩石学报, 40(3): 889-906. doi: 10.18654/1000-0569/2024.03.12
CAO Chong, SHEN Ping, FENG HaoXuan, LUO YaoQing, CHU XiangKai, REN WenBin. 2024. A study of the genesis and mineralization potential of pegmatites in the Koktokayore district, Altay, Xinjiang: Indications from SEM-CL and trace elements in quartz. Acta Petrologica Sinica, 40(3): 889-906. doi: 10.18654/1000-0569/2024.03.12
Citation: CAO Chong, SHEN Ping, FENG HaoXuan, LUO YaoQing, CHU XiangKai, REN WenBin. 2024. A study of the genesis and mineralization potential of pegmatites in the Koktokayore district, Altay, Xinjiang: Indications from SEM-CL and trace elements in quartz. Acta Petrologica Sinica, 40(3): 889-906. doi: 10.18654/1000-0569/2024.03.12

新疆阿尔泰可可托海矿区伟晶岩成因与矿化潜力研究:来自石英SEM-CL和微量元素的指示

  • 基金项目:

    本文受新疆维吾尔自治区科技计划项目(2020E01043)、河北省自然科学基金面上项目(D2023209016)、国家自然科学基金项目(42002098、91962213)及新疆维吾尔自治区人民政府国家305项目办公室、新疆维吾尔自治区"天池英才"引进计划联合资助

详细信息
    作者简介:

    曹冲, 男, 1987年生, 副教授, 主要从事矿床学方面的教学和科研工作, E-mail: caochong@ncst.edu.cn

    通讯作者: 申萍, 女, 1964年生, 研究员, 主要从事矿床学方面的研究工作, E-mail: pshen@mail.iggcas.ac.cn
  • 中图分类号: P575.3;P588.121

A study of the genesis and mineralization potential of pegmatites in the Koktokayore district, Altay, Xinjiang: Indications from SEM-CL and trace elements in quartz

More Information
  • 新疆阿尔泰可可托海3号脉矿床是世界瞩目的伟晶岩型稀有金属Li-Be-Nb-Ta-Rb-Cs-Hf矿床。尽管前人对3号脉伟晶岩矿床已经进行了大量的研究工作, 然而在伟晶岩稀有金属成矿潜力以及伟晶岩成因问题上仍存在一些争议。本文以发育在可可托海矿区不同规模的伟晶岩脉以及淡色花岗岩为研究对象, 利用石英SEM-CL和原位微量元素技术手段, 查明各伟晶岩脉和花岗岩的稀有金属禀赋差异及成因联系。研究结果表明, 石英的Li和Al含量可以用来指示伟晶岩的矿化潜力。与1号和2号伟晶岩脉相比, 3号伟晶岩脉具有更宽的分异范围, 以石英中Ge/Ti变化于1.83×10-6~159×10-6范围为特征, 更高的Li含量, 其中外侧带平均Li含量为39×10-6, 因而成矿潜力最大。此外, 证实了白云母钠长花岗岩为矿化花岗岩, 其微量元素组成和演化程度与3号脉伟晶岩外侧带相当, 而白云母碱长花岗岩为贫矿花岗岩。更重要的是, 本文利用各伟晶岩结构分带内的石英中Ge/Ti-Ge以及Ge/Ti-Al/Ti图解, 确定了各伟晶岩脉具有相似的演化趋势, 指示它们可能源于相同的花岗岩母岩。与世界上典型的RMG(花岗岩浆演化后残余熔浆结晶)和DPA(直接深部地壳熔融)成因的伟晶岩相比, 可可托海矿区含矿伟晶岩和花岗岩中石英微量元素与RMG成因伟晶岩存在地球化学亲和性, 这指示它们来源于花岗质岩浆的残留熔浆。

  • 加载中
  • 图 1 

    新疆阿尔泰地区区域地质图(据Tian et al, 2016)

    Figure 1. 

    Geological sketch map of the Chinese Altay (after Tian et al, 2016)

    图 2 

    新疆阿尔泰可可托海矿区地质图(据白应雄等,2021Cao et al.,2022修改)

    Figure 2. 

    Geological map of the Koktokay pegmatite field of the Chinese Altay (modified after Bai et al., 2021; Cao et al., 2022)

    图 3 

    可可托海矿区1号脉和2号脉典型伟晶岩结构分带

    Figure 3. 

    Cross sections of No.1 and No.2 pegmatites in the Koktokay ore district

    图 4 

    伟晶岩各结构分带正交偏光下显微镜照片

    Figure 4. 

    Thin-section microphotographs from different textural zones in the Koktokay field

    图 5 

    可可托海矿区花岗岩与伟晶岩代表性石英SEM-CL图像

    Figure 5. 

    SEM-CL images of representative quartz from granite and pegmatite in the Koktokay ore district

    图 6 

    石英微量元素替换机制图解

    Figure 6. 

    Diagrams of replacement mechanism of trace elements of quartz

    图 7 

    石英微量元素二元图解

    Figure 7. 

    Binary diagrams of quartz trace elements

    图 8 

    石英Al/10-Ti-Ge×10三元图解(据Müller et al.,2021)

    Figure 8. 

    Quartz ternary diagram of Al/10-Ti-Ge×10 (after Müller et al., 2021)

    表 1 

    新疆阿尔泰可可托海矿区稀有金属伟晶岩矿床石英微量元素数据表(×10-6)

    Table 1. 

    Trace element compositions in quartz of different structural zones from each pegmatite at Kokotkay, Altay, Xinjiang (×10-6)

    分带及花岗岩 样品号 点号 Li Be B Na Mg Al Si P K Ca Ti Mn Fe Ge As Rb Sr Cs Ge/Ti Ge T(℃)
    1a号脉
    边缘带
    21KK-1a-21 1 19 0.12 0.76 6.52 0.38 138 467225 20 1.15 67 0.93 0.46 BDL 3.81 0.31 BDL 0.00 0.02 4.09 3.81 500
    2 26 0.08 0.73 2.86 BDL 146 467223 24 BDL 49 1.03 0.54 BDL 3.90 0.23 BDL BDL 0.04 3.80 3.90 508
    3 22 0.09 0.42 2.56 0.06 123 467244 23 BDL 56 1.15 0.55 BDL 4.41 0.26 BDL 0.01 0.01 3.82 4.41 515
    4 23 0.18 0.42 4.63 0.10 267 467154 BDL 0.75 BDL 0.80 0.67 1.60 3.84 0.24 BDL 0.00 0.02 4.81 3.84 490
    5 26 0.43 0.84 1.37 0.24 629 466827 9 0.38 BDL 0.86 0.74 3.08 3.98 0.27 BDL 0.01 0.02 4.64 3.98 495
    6 15 0.08 0.52 2.23 0.13 114 467281 14 1.16 35 0.73 0.66 1.43 4.57 0.22 BDL 0.00 BDL 6.28 4.57 484
    1a号脉
    外侧带
    21KK-1a-22 1 19 0.09 1.32 3.52 0.08 102 467301 11 0.00 BDL 0.79 0.46 BDL 3.67 0.16 BDL BDL BDL 4.64 3.67 489
    2 13 0.07 0.96 5.35 0.13 80 467322 14 0.00 BDL 0.82 0.40 BDL 3.90 0.15 BDL BDL 0.01 4.76 3.90 492
    3 10 BDL 1.07 5.32 2.15 94 467286 12 0.00 32 0.77 0.59 29.60 3.73 0.21 0.02 0.01 0.01 4.83 3.73 488
    4 34 0.13 1.11 5.88 1.63 176 467198 16 0.00 40 0.84 0.58 BDL 3.38 0.16 BDL 0.00 BDL 4.00 3.38 494
    1a号脉
    外侧带
    21KK-1a-25 1 22 0.11 2.00 10.59 0.36 113 467247 17 0.00 58 0.49 0.43 BDL 3.54 0.19 BDL 0.01 0.03 7.17 3.54 459
    2 24 BDL 1.96 7.67 0.11 108 467284 15 0.00 BDL 0.58 0.58 BDL 3.75 0.18 BDL 0.14 BDL 6.43 3.75 469
    3 15 BDL 1.61 3.45 1.85 87 467295 14 0.00 47 0.63 0.50 BDL 3.89 0.22 0.05 BDL BDL 6.14 3.89 475
    4 23 0.07 1.68 2.57 BDL 112 467274 24 0.00 BDL 0.73 0.55 BDL 3.63 0.12 BDL BDL BDL 4.99 3.63 484
    1a号脉
    中间带
    21KK-1a-29 1 46 0.61 1.19 4.05 0.23 272 467115 20 BDL BDL 0.41 0.53 BDL 3.65 0.19 BDL 0.00 0.16 9.00 3.65 448
    2 35 0.27 10.97 4.03 0.23 369 467013 23 0.00 27 0.51 0.70 1.90 3.73 0.38 BDL 0.00 0.19 7.27 3.73 461
    3 26 BDL 7.25 6.85 0.39 265 467106 20 0.00 44 0.44 0.44 9.34 3.79 0.32 BDL 0.02 0.06 8.53 3.79 452
    4 35 0.34 15.61 14.70 0.61 423 466754 17 0.00 316 0.55 0.84 17.99 3.76 0.53 BDL 0.48 0.09 6.87 3.76 466
    1a号脉
    内核
    21KK-1a-28 1 34 BDL 0.57 42.21 0.16 209 467155 16 0.00 BDL 0.25 2.74 BDL 6.17 BDL BDL 0.01 0.04 24.26 6.17 419
    2 32 0.18 0.87 15.04 0.21 169 467227 16 0.00 BDL 0.20 0.39 BDL 6.15 0.17 BDL 0.01 0.06 30.57 6.15 407
    21KK-1a-30 1 58 0.12 0.36 13.31 2.96 295 467068 17 0.00 BDL 0.32 0.73 19.36 7.42 0.16 0.47 0.04 0.26 22.89 7.42 433
    2 59 0.18 0.64 15.82 1.89 283 467067 23 0.00 20 0.20 0.44 11.58 7.71 0.12 0.20 0.04 0.27 38.18 7.71 407
    3 35 0.09 1.14 114.72 6.38 263 466877 20 0.00 240 0.27 0.98 37.53 7.42 0.31 0.62 0.21 1.30 27.34 7.42 424
    1b号脉
    外侧带
    21KK-1b-11 1 45 0.14 1.49 9.38 0.38 288 467065 21 0.63 60 1.33 0.57 BDL 3.84 0.31 0.46 0.04 0.17 2.89 3.84 526
    2 32 0.09 0.62 3.38 0.47 180 467226 6 0.84 BDL 1.53 0.54 BDL 3.89 0.26 BDL 0.02 0.05 2.54 3.89 536
    3 24 BDL BDL 3.02 0.10 135 467282 9 BDL BDL 1.27 0.60 BDL 3.90 0.18 BDL BDL 0.01 3.07 3.90 523
    4 26 0.18 0.53 2.62 0.10 252 467171 BDL BDL BDL 1.28 0.60 BDL 3.72 0.23 BDL 0.01 0.01 2.90 3.72 523
    5 26 0.13 0.79 1.88 0.08 172 467243 BDL BDL BDL 1.31 0.54 BDL 3.94 0.32 BDL BDL BDL 3.00 3.94 525
    1b号脉
    核部
    21KK-1b-19 1 53 1.81 0.97 4.56 0.45 320 467062 11 2.88 28 0.71 0.66 BDL 5.33 0.21 0.17 0.01 0.56 7.49 5.33 482
    2 40 0.10 0.67 185.15 0.92 494 466801 16 2.66 34 0.68 0.55 BDL 5.23 0.18 BDL 0.01 0.16 7.66 5.23 479
    3 52 0.19 1.90 81.89 0.46 430 466931 18 1.54 BDL 0.67 0.52 BDL 5.21 0.19 0.02 0.01 0.04 7.83 5.21 478
    4 55 0.52 0.88 12.02 1.66 378 466998 18 5.43 25 0.77 0.56 BDL 5.41 0.15 BDL 0.01 0.02 7.05 5.41 488
    5 49 0.24 0.99 2.88 0.23 299 467101 14 0.75 BDL 0.61 0.66 BDL 5.32 0.15 BDL 0.00 0.03 8.66 5.32 472
    6 48 0.23 1.35 15.04 0.73 395 467005 16 3.85 BDL 0.68 0.79 BDL 5.48 0.16 0.02 0.01 0.03 8.02 5.48 479
    2a号脉
    外侧带
    20KK210-33-2 1 26 0.10 2.17 1.84 BDL 185 467226 BDL 0.60 BDL 1.37 1.36 BDL 3.63 BDL BDL BDL 0.02 2.65 3.63 528
    2 3 BDL 0.61 2.02 BDL 87 467330 19 0.58 BDL 1.20 0.56 BDL 3.72 0.18 BDL 0.00 0.02 3.09 3.72 518
    3 7 BDL 0.76 BDL 0.99 50 467355 22 1.13 BDL 0.86 0.75 BDL 2.14 BDL BDL BDL 0.02 2.49 2.14 495
    4 13 BDL 0.89 2.36 0.10 88 467299 24 0.75 30 1.38 0.55 BDL 3.64 0.20 BDL BDL 0.03 2.65 3.64 529
    5 23 0.75 0.68 7.06 BDL 160 467240 26 BDL BDL 1.08 0.71 BDL 3.56 0.14 0.03 BDL BDL 3.28 3.56 511
    20KK210-28-1 1 23 BDL 1.15 2.51 0.04 104 467297 7 0.29 25 0.74 0.61 BDL 3.76 0.21 BDL BDL 0.01 5.09 3.76 485
    2 19 0.10 0.86 3.90 BDL 83 467317 10 0.64 BDL 0.72 0.77 BDL 3.52 0.22 0.04 0.01 0.02 4.90 3.52 483
    3 18 BDL 1.10 5.91 BDL 65 467351 6 BDL BDL 0.67 0.48 BDL 4.01 0.15 BDL BDL BDL 6.01 4.01 478
    4 24 0.14 0.70 3.00 0.02 77 467329 6 BDL BDL 0.54 BDL BDL 3.86 0.09 BDL BDL BDL 7.11 3.86 465
    2b号脉
    外侧带
    1 27 0.13 0.90 3.52 0.08 122 467269 18 0.52 BDL 1.13 0.61 BDL 4.95 BDL BDL 0.02 0.07 4.39 4.95 514
    20KK210-11 2 31 0.11 0.97 3.92 0.22 142 467244 18 0.66 BDL 1.25 0.87 BDL 4.55 0.25 BDL 0.01 0.02 3.65 4.55 521
    3 17 BDL 0.43 8.55 BDL 94 467305 18 0.50 BDL 1.09 0.71 BDL 4.06 0.14 BDL 0.06 0.09 3.73 4.06 512
    2b号脉
    中间带
    20KK210-8 1 19 BDL 0.60 2.52 BDL 115 467280 21 BDL BDL 0.58 0.45 BDL 4.88 BDL BDL 0.01 BDL 8.45 4.88 469
    2 19 0.10 BDL 4.03 0.09 112 467219 23 BDL 113 0.56 0.55 BDL 4.29 BDL BDL 0.01 BDL 7.62 4.29 467
    3 17 0.07 0.50 2.13 BDL 103 467299 23 BDL BDL 0.72 0.40 BDL 4.80 0.12 BDL BDL BDL 6.63 4.80 483
    4 10 BDL 0.48 4.80 0.30 88 467020 9 2.87 474 0.68 0.54 8.08 4.57 BDL 0.04 0.37 0.05 6.73 4.57 479
    5 14 BDL 0.39 2.92 0.23 86 467273 24 BDL 73 0.74 0.41 BDL 4.30 0.14 BDL 0.01 0.01 5.77 4.30 485
    6 6 BDL 0.39 2.68 0.10 68 467319 26 1.20 32 0.55 0.64 1.99 4.71 0.12 BDL 0.00 BDL 8.63 4.71 466
    1 35 0.39 3.44 21.86 0.63 387 466766 BDL 63.69 336 0.77 1.75 BDL 5.85 0.77 6.43 0.15 3.51 7.65 5.85 488
    20KK210-13-2 2 42 0.14 2.12 6.28 0.17 308 467052 18 28.69 BDL 0.94 1.31 3.64 7.00 0.38 2.71 0.02 3.09 7.43 7.00 501
    3 28 BDL BDL 4.24 BDL 139 467269 BDL 0.60 BDL 0.97 0.92 BDL 7.15 0.22 BDL 0.02 0.06 7.38 7.15 503
    3号脉
    外侧带
    PC1-4 1 62 0.20 1.65 1.36 BDL 345 467058 BDL 0.67 BDL 2.57 0.53 BDL 2.67 0.14 BDL 0.00 0.02 1.04 2.67 578
    2 43 BDL 1.40 2.86 0.19 235 467162 19 2.40 BDL 1.95 0.63 BDL 2.54 0.24 0.03 0.06 0.03 1.31 2.54 555
    3 27 BDL BDL 0.68 BDL 148 467253 14 BDL BDL 1.01 0.62 BDL 2.89 BDL BDL 0.00 0.03 2.87 2.89 506
    4 35 BDL 0.93 0.67 BDL 186 467221 13 0.49 BDL 2.10 0.86 BDL 2.74 BDL BDL BDL BDL 1.31 2.74 561
    5 27 BDL 0.83 0.86 BDL 147 467266 BDL BDL BDL 1.30 0.57 BDL 2.62 0.10 BDL BDL BDL 2.01 2.62 524
    6 37 BDL 1.22 1.08 0.13 203 467203 BDL 1.51 BDL 1.56 0.48 BDL 3.78 0.11 0.04 BDL 0.03 2.42 3.78 538
    白云母碱
    长花岗岩
    1 5 BDL 0.61 0.86 BDL 26 467402 BDL BDL BDL 5.56 0.51 BDL 1.78 0.26 BDL 0.08 BDL 0.32 1.78 647
    2 3 BDL BDL 0.96 0.27 25 467386 13 BDL BDL 5.50 0.66 BDL 1.46 0.15 0.02 0.05 0.15 0.27 1.46 646
    3 3 BDL BDL 0.93 BDL 24 467398 12 BDL BDL 6.46 0.65 BDL 1.37 0.18 BDL BDL 0.05 0.21 1.37 662
    20KKPAB-17 4 5 BDL 0.80 1.02 0.43 48 467361 12 3.96 BDL 7.67 0.73 9.74 1.44 0.15 0.05 0.00 0.13 0.19 1.44 680
    5 6 BDL BDL BDL 0.23 36 467365 16 BDL BDL 6.70 0.75 BDL 1.57 0.12 BDL 0.00 BDL 0.23 1.57 666
    6 5 BDL BDL BDL BDL 29 467350 22 0.63 BDL 12.94 1.68 17.46 1.60 0.19 BDL 0.05 BDL 0.12 1.60 738
    7 4 BDL BDL BDL BDL 21 467387 14 BDL BDL 5.37 0.78 2.02 1.38 0.13 BDL BDL BDL 0.26 1.38 644
    1 3 BDL 0.49 0.90 BDL 27 467377 14 BDL BDL 6.39 0.84 BDL 1.46 0.20 BDL BDL BDL 0.23 1.46 661
    2 BDL BDL 0.51 2.39 0.52 19 467368 31 0.91 BDL 2.48 0.66 BDL 1.42 0.15 BDL 0.01 0.09 0.57 1.42 575
    3 1 BDL 0.58 1.66 0.12 21 467374 29 0.58 BDL 3.24 0.85 1.76 1.53 0.18 BDL 0.01 BDL 0.47 1.53 597
    20KKPAB-16 4 BDL BDL BDL 1.92 0.10 13 467395 25 1.08 BDL 3.48 0.71 BDL 1.49 0.17 BDL 0.01 0.02 0.43 1.49 604
    5 1 BDL BDL 3.58 0.05 19 467364 30 0.66 28 7.47 0.81 BDL 1.12 0.18 BDL 0.01 BDL 0.15 1.12 677
    6 BDL BDL 0.74 7.01 0.30 21 467332 24 2.35 79 3.03 0.79 5.92 1.37 0.25 0.06 0.01 BDL 0.45 1.37 592
    7 2 0.08 0.86 6.61 1.94 23 467368 20 3.80 BDL 3.51 0.75 BDL 1.37 0.15 BDL 0.03 0.02 0.39 1.37 604
    白云母钠
    长花岗岩
    PD2-2 1 32 BDL 0.94 4.50 0.33 206 467149 BDL 2.63 97 2.34 0.54 BDL 2.62 BDL BDL 0.21 BDL 1.12 2.62 570
    2 46 BDL 0.96 3.26 0.24 242 467130 17 2.44 38 1.97 0.54 BDL 2.50 BDL 0.03 0.03 0.02 1.27 2.50 556
    3 41 BDL 1.45 12.95 0.18 218 467185 BDL 1.75 BDL 2.38 0.54 BDL 2.59 BDL BDL 0.01 0.18 1.09 2.59 571
    4 49 0.14 1.44 2.50 0.10 264 467123 18 1.85 BDL 2.12 0.66 BDL 2.66 0.18 BDL 0.01 0.02 1.26 2.66 562
    注:根据白云母花岗岩全岩锆石饱和温度计,求出全岩锆石饱和温度(Miller et al.,2003),求得aTiO2均值,将计算的活度值代入温度计算公式T(K)=-3765/[ln(CTi/aTiO2)-5.69] (Wark and Watson, 2006)求得伟晶岩和花岗岩形成温度;BDL:低于检测限;“1a、1b、2a、2b”号脉中的字母“a”和“b”代表各伟晶岩脉测试的典型结构剖面的编号
    下载: 导出CSV
  •  

    Bai YX, Shen P, Cao C, Pan HD, Li CH, Luo YQ, Feng HX and Suo QY. 2021. Geochemical characteristics and significance of apatite from the Koktokay pegmatitic rare-metal deposit, Altay, Xinjiang. Acta Petrologica Sinica, 37(9): 2843-2860 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.09.15

     

    Beurlen H, Müller A, Silva D and Da Silva MRR. 2011. Petrogenetic significance of LA-ICP-MS trace-element data on quartz from the Borborema pegmatite province, Northeast Brazil. Mineralogical Magazine, 75(5): 2703-2719 doi: 10.1180/minmag.2011.075.5.2703

     

    Beurlen H, Thomas R, da Silva MRR, Müller A, Rhede D and Soares DR. 2014. Perspectives for Li- and Ta-mineralization in the Borborema pegmatite province, NE-Brazil: A review. Journal of South American Earth Sciences, 56: 110-127 doi: 10.1016/j.jsames.2014.08.007

     

    Bian YB, Zou SH, Xu DR, Chen XL, Deng T, Wan TA and Li B. 2023. Research progress on textural and trace element characteristics of quartz and its application in magmatic-hydrothermal deposits. Geotectonica et Metallogenia, 47(2): 407-427 (in Chinese with English abstract)

     

    Breiter K, Ďurišová J and Dosbaba M. 2020. Chemical signature of quartz from S- and A-type rare-metal granites: A summary. Ore Geology Reviews, 125: 103674 doi: 10.1016/j.oregeorev.2020.103674

     

    Cai KD, Sun M, Yuan C, Zhao GC, Xiao WJ and Long XP. 2012. Keketuohai mafic-ultramafic complex in the Chinese Altai, NW China: Petrogenesis and geodynamic significance. Chemical Geology, 294-295: 26-41

     

    Cao C, Shen P, Bai YX, Luo YQ, Feng HX, Li CH and Pan HD. 2022. Chemical evolution of micas and Nb-Ta oxides from the Koktokay pegmatites, Altay, NW China: Insights into rare-metal mineralization and genetic relationships. Ore Geology Reviews, 146: 104933 doi: 10.1016/j.oregeorev.2022.104933

     

    Cao MJ, Zhou QF, Qin KZ, Tang DM and Evans NJ. 2013. The tetrad effect and geochemistry of apatite from the Altay Koktokay No. 3 pegmatite, Xinjiang, China: Implications for pegmatite petrogenesis. Mineralogy and Petrology, 107(6): 985-1005 doi: 10.1007/s00710-013-0270-x

     

    Černý P. 1991. Fertile granites of Precambrian rare-element pegmatite fields: Is geochemistry controlled by tectonic setting or source lithologies? Precambrian Research, 51(1-4): 429-468 doi: 10.1016/0301-9268(91)90111-M

     

    Chen FW, Li HQ, Wang DH, Cai H and Chen W. 2000. New chronological evidence for Yanshanian diagenetic mineralization in China's Altay orogenic belt. Chinese Science Bulletin, 45(2): 108-114 doi: 10.1007/BF02884652

     

    Chen JF and Zhang H. 2011. Trace elements in quartz lattice and their implications for petrogenesis and mineralization. Geological Journal of China Universities, 17(1): 125-135 (in Chinese with English abstract) doi: 10.3969/j.issn.1006-7493.2011.01.017

     

    Dill HG. 2015a. The Hagendorf-Pleystein Province: The Center of Pegmatites in an Ensialic Orogen. Cham: Springer, 1-465

     

    Dill HG. 2015b. Pegmatites and aplites: Their genetic and applied ore geology. Ore Geology Reviews, 69: 417-561 doi: 10.1016/j.oregeorev.2015.02.022

     

    Garate-Olave I, Müller A, Roda-Robles E, Gil-Crespo PP and Pesquera A. 2017. Extreme fractionation in a granite-pegmatite system documented by quartz chemistry: The case study of Tres Arroyos (Central Iberian Zone, Spain). Lithos, 286-287: 162-174 doi: 10.1016/j.lithos.2017.06.009

     

    Götze J and Möckel R. 2012. Quartz: Deposits, Mineralogy and Analytics. Berlin: Springer, 1-360

     

    Han J, Zhao Z, Pete H et al. . 2022. A 50 m. y. melting model for the rare metal-rich Koktokay pegmatite in the Chinese Altai: Implications from a newly identified Jurassic granite. Geological Society of America Bulletin, 135: 1467-1479

     

    He LF, Li L, Shen P, Wang SH, Li ZY, Zhou NN, Chen RJ and Qin KZ. 2023. Geophysical approaches to the exploration of lithium pegmatites and a case study in Koktohay. Earth Science Frontiers, 30(5): 244-254 (in Chinese with English abstract)

     

    Huang RF and Audétat A. 2012. The titanium-in-quartz (TitaniQ) thermobarometer: A critical examination and re-calibration. Geochimica et Cosmochimica Acta, 84: 75-89 doi: 10.1016/j.gca.2012.01.009

     

    Huang YS, Zhang H, Lü ZH, Tang Y and Tang H. 2016. Research on emplacement depths of Permian and Triassic pegmatites in Altay, Xinjiang, China: Indications from fluid inclusions. Acta Mineralogica Sinica, 36(4): 571-585 (in Chinese with English abstract)

     

    Jacamon F and Larsen RB. 2009. Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: The Ge/Ti ratio of quartz as an index of igneous differentiation. Lithos, 107(3-4): 281-291 doi: 10.1016/j.lithos.2008.10.016

     

    Larsen RB, Polvè M and Juve G. 2000. Granite pegmatite quartz from Evje-Iveland: Trace element chemistry and implications for the formation of high-purity quartz. Norges Geologiske Undersokelse Bulletin, 436: 57-65

     

    Larsen RB, Henderson I, Ihlen PM and Jacamon F. 2004. Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway. Contributions to Mineralogy and Petrology, 147(5): 615-628 doi: 10.1007/s00410-004-0580-4

     

    Lin LH, Xu JH, Wei H, Chen DL, Xu W, Liu ZQ and Wang YH. 2012. SRXRF study of fluid inclusions in Beryl from the Kektokay No. 3 pegmatite vein, Altay, Xinjiang. Acta Petrologica et Mineralogica, 31(4): 603-611 (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6524.2012.04.012

     

    Liu CQ and Zhang H. 2005. The lanthanide tetrad effect in apatite from the Altay No. 3 pegmatite, Xingjiang, China: An intrinsic feature of the pegmatite magma. Chemical Geology, 214(1-2): 61-77 doi: 10.1016/j.chemgeo.2004.08.054

     

    Liu ZC and Yuan ZZ. 2022. Trace elemental characteristics and implications of the quartz from Ramba leucogranites in Himalaya. Acta Petrologica Sinica, 38(7): 1952-1966 (in Chinese with English abstract) doi: 10.18654/1000-0569/2022.07.09

     

    London D. 2009. The origin of primary textures in granitic pegmatites. The Canadian Mineralogist, 47(4): 697-724 doi: 10.3749/canmin.47.4.697

     

    London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349-383 doi: 10.1016/j.oregeorev.2018.04.020

     

    Long XP, Yuan C, Sun M, Xiao WJ, Wang YJ, Cai KD and Jiang YD. 2012. Geochemistry and Nd isotopic composition of the Early Paleozoic flysch sequence in the Chinese Altai, Central Asia: Evidence for a northward-derived mafic source and insight into Nd model ages in accretionary orogen. Gondwana Research, 22(2): 554-566 doi: 10.1016/j.gr.2011.04.009

     

    Lv ZH, Zhang H, Tang Y, Liu YL and Zhang X. 2018. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope. Ore Geology Reviews, 95: 161-181 doi: 10.1016/j.oregeorev.2018.02.022

     

    Lv ZH, Zhang H, Tang Y, Zhao JY, Liu YL and Guo L. 2018. The distribution of phosphorous in various types of pegmatites from Altai, Xinjiang and its implication. Bulletin of Mineralogy, Petrology and Geochemistry, 37(2): 260-270 (in Chinese with English abstract)

     

    Lv ZH, Zhang H and Tang Y. 2021. Anatexis origin of rare metal/earth pegmatites: Evidences from the Permian pegmatites in the Chinese Altai. Lithos, 380-381: 105865 doi: 10.1016/j.lithos.2020.105865

     

    Martin RF and De Vito C. 2005. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. The Canadian Mineralogist, 43(6): 2027-2048 doi: 10.2113/gscanmin.43.6.2027

     

    Miller CF, McDowell SM and Mapes RW. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529-532 doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2

     

    Müller A and Koch-Müller M. 2009. Hydrogen speciation and trace element contents of igneous, hydrothermal and metamorphic quartz from Norway. Mineralogical Magazine, 73(4): 569-583 doi: 10.1180/minmag.2009.073.4.569

     

    Müller A, Ihlen PM, Snook B, Larsen RB, Flem B, Bingen B and Williamson BJ. 2015. The chemistry of quartz in granitic pegmatites of Southern Norway: Petrogenetic and economic implications. Economic Geology, 110(7): 1737-1757 doi: 10.2113/econgeo.110.7.1737

     

    Müller A, Keyser W, Simmons WB, Webber K, Wise M, Beurlen H, Garate-Olave I, Roda-Robles E and Galliski Má. 2021. Quartz chemistry of granitic pegmatites: Implications for classification, genesis and exploration. Chemical Geology, 584: 120507 doi: 10.1016/j.chemgeo.2021.120507

     

    Müller A, Simmons W, Beurlen H, Thomas R, Ihlen PM, Wise M, Roda-Robles E, Neiva AMR and Zagorsky V. 2022. A proposed new mineralogical classification system for granitic pegmatites: Part I, History and the need for a new classification. The Canadian Mineralogist, 60(2): 203-227 doi: 10.3749/canmin.1700088

     

    Peterková T and Dolejš D. 2019. Magmatic-hydrothermal transition of Mo-W-mineralized granite-pegmatite-greisen system recorded by trace elements in quartz: Krupka district, Eastern Krušnéhory/Erzgebirge. Chemical Geology, 523: 179-202 doi: 10.1016/j.chemgeo.2019.04.009

     

    Qin KZ, Zhou QF, Tang DM, Wang CL and Zhu LQ. 2021. The emplacement mechanism, melt-fluid evolution, rare-element metallogenesis and puzzles of the Koktokay No. 3 pegmatite rare elemental deposit, Altai. Acta Geologica Sinica, 95(10): 3039-3053 (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2021.10.007

     

    Rottier B and Casanova V. 2021. Trace element composition of quartz from porphyry systems: A tracer of the mineralizing fluid evolution. Mineralium Deposita, 56(5): 843-862 doi: 10.1007/s00126-020-01009-0

     

    Selway JB, Breaks FW and Tindle AG. 2005. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits. Exploration and Mining Geology, 14(1-4): 1-30 doi: 10.2113/gsemg.14.1-4.1

     

    Shen P, Pan HD, Li CH, Feng HX, He LF, Bai YX, Luo YQ, Suo QY and Cao C. 2022. Newly-recognized Triassic highly fractionated leucogranite in the Koktokay deposit (Altai, China): Rare-metal fertility and connection with the No. 3 pegmatite. Gondwana Research, 112: 24-51 doi: 10.1016/j.gr.2022.09.007

     

    Simmons WB and Falster AU. 2016. Evidence for an anatectic origin of a LCT typepegmatite: Mt. Mica, Maine. In: Second Eugene E (ed.). Foord Pegmatite Symposium. Colorado, USA, 103

     

    Tang H and Zhang H. 2018. Characteristics of trace elements in quartz from No. 3 pegmatite, Koktokay area, Xinjiang, China and implication for magmatic-hydrothermal evolution. Acta Mineralogica Sinica, 38(1): 15-24 (in Chinese with English abstract) doi: 10.1016/j.chnaes.2017.09.005

     

    Tang Y, Wang H, Zhang H and Lv ZH. 2018. K-feldspar composition as an exploration tool for pegmatite-type rare metal deposits in Altay, NW China. Journal of Geochemical Exploration, 185: 130-138 doi: 10.1016/j.gexplo.2017.11.015

     

    Thomas JB, Bruce Watson E, Spear FS, Shemella PT, Nayak SK and Lanzirotti A. 2010. TitaniQ under pressure: The effect of pressure and temperature on the solubility of Ti in quartz. Contributions to Mineralogy and Petrology, 160(5): 743-759 doi: 10.1007/s00410-010-0505-3

     

    Tian Y, Qin KZ, Zhou QF and Paterson G. 2016. Structural control on the shape of intrusions in the Koktokay ore district, Chinese Altai, northwestern China. Journal of Structural Geology, 83: 85-102 doi: 10.1016/j.jsg.2015.06.003

     

    Wang RC, Hu H, Zhang AC, Fontan F, Zhang H and De Parseval P. 2006. Occurrence and late re-equilibration of pollucite from the Koktokay No. 3 pegmatite, Altai, northwestern China. American Mineralogist, 91(5-6): 729-739 doi: 10.2138/am.2006.1881

     

    Wang RC, Wu FY, Xie L, Liu XC, Wang JM, Yang L, Lai W and Liu C. 2017. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet. Science China (Earth Sciences), 60(9): 1655-1663 doi: 10.1007/s11430-017-9075-8

     

    Wark DA and Watson EB. 2006. TitaniQ: Atitanium-in-quartz geothermometer. Contributions to Mineralogy and Petrology, 152(6): 743-754 doi: 10.1007/s00410-006-0132-1

     

    Wise MA, Müller A and Simmons WB. 2022. A proposed new mineralogical classification system for granitic pegmatites. The Canadian Mineralogist, 60(2): 229-248 doi: 10.3749/canmin.1800006

     

    Wu CN, Zhu JC, Liu CS, Yang SZ, Zhu BY and Ning GJ. 1994. A study on the inclusions in spodumenes from Altai pegmatite, Xinjiang. Geotectonica et Metallogenia, 18(4): 353-362 (in Chinese with English abstract)

     

    Wu CN, Zhu JC, Liu CS, Yang SZ, Zhu BY and Ning GJ. 1995. A study on the inclusions in beryls from Kuwei and Keketuohai pegmatites, Altai, Xinjiang. Journal of Nanjing University (Natural Siences Edition), 31(2): 350-356 (in Chinese with English abstract)

     

    Wu FY, Liu XC, Ji WQ, Wang JM and Yang L. 2017. Highly fractionated granites: Recognition and research. Science China (Earth Sciences), 60(7): 1201-1219 doi: 10.1007/s11430-016-5139-1

     

    Wu FY, Liu XC, Liu ZC, Wang RC, Xie L, Wang JM, Ji WQ, Yang L, Liu C, Khanal GP and He SX. 2020. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 352-353: 105319 doi: 10.1016/j.lithos.2019.105319

     

    Yan JW, Liu F, Shen Y and Zhang ZX. 2020. Constraints on timing of magmatic activity and formation of pegmatite in the Koktokay pegmatite field, Xinjiang. Acta Geosicentica Sinica, 41(5): 663-674 (in Chinese with English abstract)

     

    Yin R, Wang RC, Zhang AC, Hu H, Zhu JC, Rao C and Zhang H. 2013. Extreme fractionation from zircon to hafnon in the Koktokay No. 1 granitic pegmatite, Altai, northwestern China. American Mineralogist, 98(10): 1714-1724 doi: 10.2138/am.2013.4494

     

    Zhang H, Lü ZH and Tang Y. 2019. Metallogeny and prospecting model as well as prospecting direction of pegmatite-type rare metal ore deposits in Altay orogenic belt, Xinjiang. Mineral Deposits, 38(4): 792-814 (in Chinese with English abstract)

     

    Zhang X, Zhang H, Ma ZL, Tang Y, Lv ZH, Zhao JY and Liu YL. 2016. A new model for the granite-pegmatite genetic relationships in the Kaluan-Azubai-Qiongkuer pegmatite-related ore fields, the Chinese Altay. Journal of Asian Earth Sciences, 124: 139-155 doi: 10.1016/j.jseaes.2016.04.020

     

    Zhou QF. 2013. The geochronology, mineralogy, melt-fluid evolution and metallogenesis of the Koktokay No. 3 pegmatitic rare-element deposit, Altai, China. Ph. D. Dissertation. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-222 (in Chinese with English abstract)

     

    Zhou QF, Qin KZ, Tang DM, Ding JG and Guo ZL. 2013. Mineralogy and significance of micas and feldspars from the Koktokay No. 3 pegmatitic rare-element deposit, Altai. Acta Petrologica Sinica, 29(9): 3004-3022 (in Chinese with English abstract)

     

    Zhu YF, Zeng YS and Gu LB. 2006. Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China. Journal of Asian Earth Sciences, 27(1): 61-77 doi: 10.1016/j.jseaes.2005.01.007

     

    Zou TR, Zhang XC, Jia FY, Wang RC, Cao HZ and Wu BQ. 1986. The origin of No. 3 pegmatite in Altayshan, Xinjiang. Mineral Deposits, 5(4): 34-48 (in Chinese with English abstract)

     

    Zou TR and Li QC. 2006. Rare and Rare Earth Metallic Deposits in Xinjiang, China. Beijing: Geological Publishing House, 1-284 (in Chinese with English abstract)

     

    白应雄, 申萍, 曹冲, 潘鸿迪, 李昌昊, 罗耀清, 冯浩轩, 索青宇. 2021. 新疆阿尔泰可可托海伟晶岩型稀有金属矿床中磷灰石地球化学特征及意义. 岩石学报, 37(9): 2843-2860 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.09.15

     

    卞玉冰, 邹少浩, 许德如, 陈喜连, 邓腾, 万泰安, 李博. 2023. 石英的结构和微量元素特征研究进展及其在岩浆-热液矿床中的应用. 大地构造与成矿学, 47(2): 407-427 https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202302010.htm

     

    陈剑锋, 张辉. 2011. 石英晶格中微量元素组成对成岩成矿作用的示踪意义. 高校地质学报, 17(1): 125-135 doi: 10.3969/j.issn.1006-7493.2011.01.017

     

    何兰芳, 李亮, 申萍, 王斯昊, 李志远, 周楠楠, 陈儒军, 秦克章. 2023. 伟晶岩型锂矿床地球物理探测及可可托海实例. 地学前缘, 30(5): 244-254 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202305017.htm

     

    黄永胜, 张辉, 吕正航, 唐勇, 唐宏. 2016. 新疆阿尔泰二叠纪、三叠纪伟晶岩侵位深度研究: 来自流体包裹体的指示. 矿物学报, 36(4): 571-585 https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201604018.htm

     

    林龙华, 徐九华, 魏浩, 陈栋梁, 徐伟, 刘泽群, 王燕海. 2012. 新疆阿尔泰可可托海3号伟晶岩脉绿柱石流体包裹体SRXRF研究. 岩石矿物学杂志, 31(4): 603-611 doi: 10.3969/j.issn.1000-6524.2012.04.012

     

    刘志超, 袁梓昭. 2022. 喜马拉雅然巴淡色花岗岩中石英微量元素的成分特征及其指示意义. 岩石学报, 38(7): 1952-1966 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2022.07.09

     

    吕正航, 张辉, 唐勇, 赵景宇, 刘云龙, 郭柳. 2018. 新疆阿尔泰不同矿化类型伟晶岩中磷的分布特征及其找矿指示. 矿物岩石地球化学通报, 37(2): 260-270 https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201802011.htm

     

    秦克章, 周起凤, 唐冬梅, 王春龙, 朱丽群. 2021. 阿尔泰可可托海3号脉花岗伟晶岩侵位机制、熔-流体演化、稀有金属富集机理及待解之谜. 地质学报, 95(10): 3039-3053 doi: 10.3969/j.issn.0001-5717.2021.10.007

     

    唐宏, 张辉. 2018. 可可托海3号伟晶岩脉石英中微量元素组成特征与岩浆-热液演化. 矿物学报, 38(1): 15-24 https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201801002.htm

     

    吴长年, 朱金初, 刘昌实, 杨升祖, 朱炳玉, 宁广进. 1994. 阿尔泰伟晶岩锂辉石中包裹体研究. 大地构造与成矿学, 18(4): 353-362 https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK404.009.htm

     

    吴长年, 朱金初, 刘昌实, 杨升祖, 朱炳玉, 宁广进. 1995. 新疆阿尔泰库威和可可托海伟晶岩绿柱石中包裹体研究. 南京大学学报(自然科学版), 31(2): 350-356 https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ502.028.htm

     

    闫军武, 刘锋, 申颖, 张志欣. 2020. 新疆可可托海伟晶岩田岩浆活动时限与伟晶岩形成. 地球学报, 41(5): 663-674 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202005010.htm

     

    张辉, 吕正航, 唐勇. 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向. 矿床地质, 38(4): 792-814 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904008.htm

     

    周起凤. 2013. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床年代学、矿物学、熔流体演化与成矿作用. 博士学位论文. 北京: 中国科学院地质与地球物理研究所, 1-222

     

    周起凤, 秦克章, 唐冬梅, 丁建刚, 郭正林. 2013. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义. 岩石学报, 29(9): 3004-3022 http://www.ysxb.ac.cn/article/id/aps_20130904

     

    邹天人, 张相宸, 贾富义, 王汝聪, 曹惠志, 吴柏青. 1986. 论阿尔泰3号伟晶岩脉的成因. 矿床地质, 5(4): 34-48 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198604005.htm

     

    邹天人, 李庆昌. 2006. 中国新疆稀有及稀土金属矿床. 北京: 地质出版社, 1-284

  • 加载中

(8)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2023-08-01
修回日期:  2023-10-17
刊出日期:  2024-03-01

目录