首页 | 本学科首页   官方微博 | 高级检索  
     

数值天气预报多要素深度学习融合订正方法
引用本文:张延彪,陈明轩,韩雷,宋林烨,杨璐. 数值天气预报多要素深度学习融合订正方法[J]. 气象学报, 2022, 80(1): 153-167. DOI: 10.11676/qxxb2021.066
作者姓名:张延彪  陈明轩  韩雷  宋林烨  杨璐
作者单位:中国海洋大学,青岛,266100;北京城市气象研究院,北京,100089;北京城市气象研究院,北京,100089
基金项目:国家重点研发计划项目(2018YFF0300102);北京市自然科学基金项目(8212025)。
摘    要:数值天气预报作为现代天气预报的主流技术方法,近年来不断朝着精细化方向发展,但预报误差至今仍无法避免.文中在CU-Net模型中引入稠密卷积模块形成数值预报要素偏差订正模型Dense-CUnet,在此基础上进一步融合多种气象要素和地形特征构建了Fuse-CUnet模型,开展不同模型的偏差订正试验和对比分析.以均方根误差(R...

关 键 词:数值天气预报  深度学习  偏差订正  融合订正
收稿时间:2021-05-27
修稿时间:2021-09-02

Multi-element deep learning fusion correction method for numerical weather prediction
ZHANG Yanbiao,CHEN Mingxuan,HAN Lei,SONG Linye,YANG Lu. Multi-element deep learning fusion correction method for numerical weather prediction[J]. Acta Meteorologica Sinica, 2022, 80(1): 153-167. DOI: 10.11676/qxxb2021.066
Authors:ZHANG Yanbiao  CHEN Mingxuan  HAN Lei  SONG Linye  YANG Lu
Affiliation:1.Ocean University of China,Qingdao 266100,China2.Institute of Urban Meteorology,CMA,Beijing 100089,China
Abstract:As the mainstream technology of modern weather forecast,numerical weather prediction(NWP)has been developing in the direction of refinement in recent years,yet the prediction error is still unavoidable.Therefore,it is of great significance to improve the accuracy of numerical weather forecast by revising the results.A traditional method of prediction correction,i.e.,the Anomaly Numeral-correction with Observations(ANO),is used to correct the forecast based on statistics of historical data.Results indicate that this method has a good effect.As an emerging method,deep learning has been gradually applied to the field of meteorology in recent years,and has achieved significant results in precipitation prediction and cloud image recognition.Domestic scholars in China used CU-Net,a deep learning model to correct the deviations of the model grid point forecast data of 2 m temperature,2 m relative humidity and 10 m wind respectively from the European Centre for Medium-Range Weather Forecast(ECMWF),which significantly improved the forecast compared with the ANO method.Based on the above tests,this paper uses dense convolutional structure network model to improve the CU-Net model and forms a new deviation correction model for NWP,which is named as Dense-CUnet,and further develops a deviation correction model named Fuse-CUnet to integrates multiple meteorological elements from NWP and topographic features.Deviation correction tests and comparative analysis of these different models have been carried out.Root mean square error(RMSE)and mean absolute error(MAE)are used as the scoring metrics.By comparing with the original prediction results of ECMWF and the results revised by the ANO and CU-Net methods,it is found that the dense-convolution structure network model Dense-CUnet can be used to effectively modify the positive effect.Moreover,the Fuse-CUnet model that integrates multiple elements can greatly improve the revision effect.
Keywords:NWP  Deep learning  Deviation correction  Fusion correction
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《气象学报》浏览原始摘要信息
点击此处可从《气象学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号