首页 | 本学科首页   官方微博 | 高级检索  
     

利用SVM与ARIMA组合模型进行大坝变形预测
引用本文:杨恒,岳建平,周钦坤. 利用SVM与ARIMA组合模型进行大坝变形预测[J]. 测绘通报, 2021, 0(4): 74-78. DOI: 10.13474/j.cnki.11-2246.2021.0114
作者姓名:杨恒  岳建平  周钦坤
作者单位:河海大学地球科学与工程学院, 江苏 南京 211100
基金项目:国家重点研发计划(2018YFC1508603)
摘    要:由于大坝位移时间序列数据受各种复杂因素的影响,具有非平稳和非线性等特征,因此,利用传统、单一的时间序列预测模型较难准确地描述大坝位移变形的复杂规律.综合考虑大坝位移时间序列非线性和线性特征,本文提出了一种SVM和ARIMA相结合的时间序列预测模型.将大坝变形的时间序列分为非线性部分和线性部分.针对非线性部分,利用SVM...

关 键 词:大坝变形  SVM  ARIMA模型  SVM-ARIMA组合模型  滚动预测
收稿时间:2020-05-07

Dam deformation prediction using SVM and ARIMA combined model
YANG Heng,YUE Jianping,ZHOU Qinkun. Dam deformation prediction using SVM and ARIMA combined model[J]. Bulletin of Surveying and Mapping, 2021, 0(4): 74-78. DOI: 10.13474/j.cnki.11-2246.2021.0114
Authors:YANG Heng  YUE Jianping  ZHOU Qinkun
Affiliation:College of Earth Science and Engineering, Hohai University, Nanjing 211100, China
Abstract:Because the time series data of dam displacement is affected by various complex factors and has non-stationary and nonlinear characteristics,it is difficult to accurately describe the complex laws of dam displacement and deformation using a single traditional time series prediction model. Considering of the comprehensive consideration of the nonlinear and linear characteristics of the dam displacement time series,this paper proposes a time series prediction model based on the combination of SVM and ARIMA. The dam deformation time series is divided into the nonlinear part and linear part. For the nonlinear part,the support vector machine is used for rolling prediction. Compared with the NAR dynamic neural network,the support vector machine has a relative advantage in dealing with nonlinear problems. For the linear part,a single-step rolling prediction is made through the ARIMA model,and the prediction value of the combined model is obtained by combining the two prediction results. The combined model is tested with the measured data of the dam. The experimental results show that the SVM-ARIMA combined model has high prediction accuracy and can better describe the change trend of the dam displacement, which has certain practical value.
Keywords:dam deformation  SVM  ARIMA model  SVM-ARIMA combined model  rolling prediction  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《测绘通报》浏览原始摘要信息
点击此处可从《测绘通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号