首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于机器学习算法的岩性填图方法
引用本文:冀全伟,王文磊,刘治博,祝茂强,袁长江. 一种基于机器学习算法的岩性填图方法[J]. 地质力学学报, 2021, 27(3): 339-349. DOI: 10.12090/j.issn.1006-6616.2021.27.03.031
作者姓名:冀全伟  王文磊  刘治博  祝茂强  袁长江
作者单位:自然资源部古地磁与古构造重建重点实验室, 北京 100081;中国地质科学院地质力学研究所, 北京 100081;中国地质大学(北京) , 北京 100083;自然资源部古地磁与古构造重建重点实验室, 北京 100081;中国地质科学院地质力学研究所, 北京 100081;中国地质科学院矿产资源研究所, 北京 100037;中国地质大学(北京) , 北京 100083
基金项目:国家自然科学基金项目(41822206,41772353)
摘    要:通过野外地质调查与机器学习方法的有机融合,提出了一种基于梯度提升决策树算法的岩性单元填图方法.研究以多龙矿集区为模型试验区,选择1:5万勘查地球化学数据为基础预测数据,以1:5万区域地质图为参考,进行基于梯度提升决策树算法的岩性预测填图模型试验.首先选择研究区内小范围空白区开展野外填图,建立原始数据集并初步构建岩性单元...

关 键 词:数据挖掘  信息融合  地质单元  决策树  地质填图
收稿时间:2020-11-09
修稿时间:2021-01-10

A machine learning-based lithologic mapping method
JI Quanwei,WANG Wenlei,LIU Zhibo,ZHU Maoqiang,YUAN Changjiang. A machine learning-based lithologic mapping method[J]. Journal of Geomechanics, 2021, 27(3): 339-349. DOI: 10.12090/j.issn.1006-6616.2021.27.03.031
Authors:JI Quanwei  WANG Wenlei  LIU Zhibo  ZHU Maoqiang  YUAN Changjiang
Affiliation:1.Key Laboratory of Paleomagnetism and Tectonic Reconstruction of Natural Resources, Beijing 100081, China2.Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China3.China University of Geosciences, Beijing 100083, China4.Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract:In this study, a gradient boosting decision tree (GBDT)-based lithologic mapping method constituted by field survey and machine learning is introduced. The Duolong mineral district, Tibet, China is currently chosen for model test. During the practical application, geochemical data at a 1:50000 scale is analyzed to identify lithologic units, while a geological map at the same scale currently provides lithologic units identified by field survey. Lithologic units within a small area are firstly collected from the geological map. Correspondence between geochemical data and lithologic units within the small area can consequently be marked, by which the GBDT method is applied to reclassify the geochemical data and further predict lithologic units in the Duolong district. Transforming the result to a probability distribution, areas with low probability can be identified, and further investigation will be implemented to update geological knowledge and correspondence between geochemical and lithologic units. Iteration of the process will lead a reasonable lithologic mapping result. It is shown that the model accuracy increases with iteration growing, and reaches 87% after 7 iterations. The currently proposed method highlights deep integration of field survey and machine learning algorithm, and emphasizes importance of field work in the whole modeling process. Useful geo-information can be deeply mined from existing data and further updates former geological understandings. Meanwhile, lithologic units within un-explored areas can be identified based on the knowledge in explored areas. The GBDT-based method which effectively reduces field work is a meaningful exploration in lithologic mapping and will provide a new reference and supplementary way to geological mapping.
Keywords:data mining  information fusion  geologic unit  decision tree  geological mapping
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《地质力学学报》浏览原始摘要信息
点击此处可从《地质力学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号