高级检索

考虑场地放大效应的全国地震危险分析

陈兰生, 冀昆, 温瑞智, 周宝峰. 2021. 考虑场地放大效应的全国地震危险分析. 地震工程与工程振动, (6): 177-185. doi: 10.13197/j.eeev.2021.06.177.chenls.017
引用本文: 陈兰生, 冀昆, 温瑞智, 周宝峰. 2021. 考虑场地放大效应的全国地震危险分析. 地震工程与工程振动, (6): 177-185. doi: 10.13197/j.eeev.2021.06.177.chenls.017
CHEN Lansheng, JI Kun, WEN Ruizhi, ZHOU Baofeng. 2021. Seismic hazard analysis for China considering site amplification effect. Earthquake Engineering and Engineering Dynamics, (6): 177-185. doi: 10.13197/j.eeev.2021.06.177.chenls.017
Citation: CHEN Lansheng, JI Kun, WEN Ruizhi, ZHOU Baofeng. 2021. Seismic hazard analysis for China considering site amplification effect. Earthquake Engineering and Engineering Dynamics, (6): 177-185. doi: 10.13197/j.eeev.2021.06.177.chenls.017

考虑场地放大效应的全国地震危险分析

  • 基金项目:

    中国地震局工程力学研究所所长基金项目(2019B09);黑龙江省自然科学基金联合引导项目(LH2020E022);国家自然科学基金项目(51908518);国家自然科学基金项目地区合作基金项目(U1901602)

详细信息
    作者简介:

    陈兰生(1994-),男,硕士研究生,主要从事地震危险性研究.E-mail:1130788614@qq.com

    通讯作者: 温瑞智(1968-),男,研究员,博士,主要从事工程地震与强震动观测技术研究.E-mail:ruizhi@iem.ac.cn
  • 中图分类号: TU4

Seismic hazard analysis for China considering site amplification effect

  • Fund Project: Science Foundation of the Institute of Engineering Mechanics, CEA(2019B09);Heilongjiang Provincial Natural Science Foundation of China (LH2020E022);National Natural Science Foundation China (51908518);The Regional Cooperation Fund of the National Natural Science Foundation of China(U1901602)
More Information
    Corresponding author: WEN Ruizhi, E-mail: ruizhi@iem.ac.cn
  • 目前我国第五代地震动参数区划图是以I1类基岩场地的计算结果为基准,通过统一场地放大系数调整得到II类场地的地震危险分布图,没有直接给出实际场地的地震危险分布图。因此,文中以地形坡度法插值得到的全国30 m剪切波速(VS30)分布结果为基础,并在CPSHA计算过程中引入NGA-West 2地震动衰减关系,进行考虑场地放大效应的全国地震危险性分析。首先,基于全球地震模型(GEM)提供的开源OpenQuake平台,将中国CPSHA计算过程中的三级潜源划分,地震活动性空间分布不均匀,长短轴衰减关系等特色技术环节实现了融入。为验证计算流程的可靠性,对比了某工程基岩场地安评资料的PGA的危险性曲线,得到的概率地震危险性分析结果与其基本一致;基于全国基岩场地的CPSHA计算结果进行II类场地调整系数放大后,全国34个城市的PGA值基本均位于第五代区划图给出的PGA区间内。进而结合每一个计算栅格点的VS30值,通过应用NGA衰减关系计算得到考虑场地效应的全国地震危险分布结果。对比发现,局部地区较软场地的场地放大系数已超出了目前区划图的场地调整系数范围。基于文中计算结果分别统计了我国四类工程场地的放大系数,除I类场地外,II、III、IV类场地的放大系数分布要整体略大于区划图的场地调整系数范围。文中研究成果可为我国第五代地震动参数区划图进一步考虑场地放大效应提供依据,并为下一代区划图的编制提供参考思路。
  • 加载中
  • [1]

    高孟潭.中国地震动参数区划图(GB18306-2015)宣贯教材[M].北京:中国标准出版社,中国质检出版社,2015. GAO Mengtan. Teaching Material for Seismic Ground Motion Parameters Zonation Map of China (GB18306-2015)[M]. Beijing:Standards Press of China, China Quality and Standards Publishing, 2015.(in Chinese)

    [2]

    BAZZURRO P, CORNELL C A. Ground-motion amplification in nonlinear soil sites with uncertain properties[J]. Bulletin of the Seismological Society of America, 2004, 94(6):2090-2109.

    [3]

    BAZZURRO P, CORNELL C A. Nonlinear soil-site effects in probabilistic seismic-hazard analysis[J]. Bulletin of the Seismological Society of America, 2004, 94(6):2110-2123.

    [4]

    ARISTIZABAL C, BARD P Y, BEAUVAL C, et al. Integration of site effects into probabilistic seismic hazard assessment (PSHA):a comparison between two fully probabilistic methods on the euroseistest site[J].Geosciences, 2018, 8(8):285.

    [5]

    PETERSEN M D, SHUMWAY A M, POWERS P M, et al. The 2018 update of the US national seismic hazard model:where, why, and how much probabilistic ground motion maps changed[J]. Earthquake Spectra, 2021,37(2):959-987.

    [6]

    RONG Y F, XU X W, CHENG J, et al. A probabilistic seismic hazard model for mainland China[J]. Earthquake Spectra, 2020, 36:181-209.

    [7]

    PAGANI M, MONELLI D, WEATHERILL G, et al. Open Quake Engine:An open hazard (and risk) software for the global earthquake model[J]. Seismology Research Letters, 2014, 85(3):692-702.

    [8]

    俞言祥,李山有,肖亮.为新区划图编制所建立的地震动衰减关系[J].震灾防御技术, 2013, 8(1):24-33. YU Yanxiang, LI Shanyou, XIAO Liang. Development of ground motion attenuation relations for the new seismic hazard map of China[J]. Technology for Earthquake Disaster Prevention, 2013, 8(1):24-33.(in Chinese)

    [9]

    WALD D J, ALLEN T I. Topographic slope as a proxy for seismic site conditions and amplification[J]. Bulletin of the Seismological Society of America, 2007, 97(5):1379-1395.

    [10]

    张雨婷.基于我国地形与地质条件的场地分类方法研究[D].哈尔滨:中国地震局工程力学研究所, 2020. ZHANG Yuting, Site Classification Method Based on Topographical and Geological Characteristics in China[D]. Harbin:Institute of Engineering Mechanics, China Earthquake Administration, 2020.(in Chinese)

    [11]

    DANGKUA D T, RONG Y, MAGISTRALE H. Evaluation of NGA-West2 and Chinese ground motion prediction equations for developing seismic hazard maps of Mainland China[J]. Bulletin of the Seismological Society of America, 2018, 108:2422-2443.

    [12]

    ABRAHAMSON N A, SILVA W J, KAMAI R. Summary of the ASK14 ground-motion relation for active crustal regions[J]. Earthquake Spectra, 2014,30:1025-1055.

    [13]

    BOORE D M, STEWART J P, SEYHAN E,et al. NGA-West2 equations for predicting PGA,PGV, and 5% damped PSA for shallow crustal earthquakes[J]. Earthquake Spectra, 2014,30:1057-1085.

    [14]

    CAMPBELL K W, BOZORGNIA Y. NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra[J]. Earthquake Spectra, 2014, 30:1087-1115.

    [15]

    CHIOU BS-J, YOUNGSR R. Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra[J]. Earthquake Spectra, 2014, 30:1117-1153.

    [16]

    IDRISS I M. An NGA-West2 empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes[J]. Earthquake Spectra, 2014,30:1155-1177.

    [17]

    JI K, WEN R, REN Y. et al. Disaggregation of probabilistic seismic hazard and construction of conditional spectrum for China[J]. Bull Earthquake Engineering, 2021,19:5769-5789.

  • 加载中
计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2021-03-22
修回日期:  2021-05-21

目录