首页 | 本学科首页   官方微博 | 高级检索  
     

基于1DCNN和LSTM的单站逐时气温预报方法
引用本文:李晶,唐全莉. 基于1DCNN和LSTM的单站逐时气温预报方法[J]. 热带气象学报, 2022, 38(6): 800-811. DOI: 10.16032/j.issn.1004-4965.2022.074
作者姓名:李晶  唐全莉
作者单位:1.宁波工程学院经济与管理学院,浙江 宁波 315000
基金项目:浙江省统计局重点项目22TJZZ25国家自然科学基金71964018云南省社会科学基金YB2019036昆明理工大学学生课外学术科技创新基金2020YB207
摘    要:针对海量气象观测数据间存在大量的物理噪声、与气温无关的冗余特征以及时间相关性,提出了一种将一维卷积神经网络(1DCNN)和长短期记忆神经网络(LSTM)相结合的多信息融合气温预报方法。首先,运用差分法对气象观测数据进行预处理,得到平稳时间序列数据;其次,运用1DCNN提取与气温变化相关的特征变量作为神经网络模型的输入变量;最后,运用1DCNN和LSTM构建多信息融合气温预报模型1DCNNLSTM,并以云南省昆明市历史气象观测数据为例,与传统的LSTM、1DCNN和反向传播神经网络(BP)对未来24小时的逐时气温预报进行了比较研究。研究结果表明,1DCNN-LSTM的均方根误差(RMSE)相较于LSTM、1DCNN和BP最大降低了5.221%、19.350%和9.253%,平均绝对误差(MAE)最大降低了4.419%、17.520%和8.089%。为气温的精准预报提供了参考依据。

关 键 词:1DCNN神经网络  LSTM神经网络  多信息融合  气温预报  单站逐时预测
收稿时间:2021-04-13

HOURLY TEMPERATURE FORECAST METHOD OF SINGLE STATION BASED ON 1DCNN AND LSTM
LI Jing,TANG Quanli. HOURLY TEMPERATURE FORECAST METHOD OF SINGLE STATION BASED ON 1DCNN AND LSTM[J]. Journal of Tropical Meteorology, 2022, 38(6): 800-811. DOI: 10.16032/j.issn.1004-4965.2022.074
Authors:LI Jing  TANG Quanli
Affiliation:1.Ningbo University of Technology, Ningbo, Zhejiang 315000, China2.Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
Abstract:To deal with the large amount of physical noise, redundant features unrelated to temperature, and time correlation between massive meteorological observational data, a multi-information fusion temperature forecast method combining one-dimensional convolutional neural network (1DCNN) and long short-term memory neural network (LSTM) is proposed. First, the difference method is used to preprocess the meteorological observational data to obtain stationary time series data. Second, 1DCNN is used to extract feature variables related to temperature changes as the input variables of the neural network model. Finally, 1DCNN and LSTM are used to establish a multi-information fusion temperature prediction model 1DCNN-LSTM. Taking the historical meteorological observational data of Kunming City in Yunnan Province as an example, the model is compared with the traditional LSTM, 1DCNN and Back Propagation Neural Network (BP) of the hourly temperature forecast in the next 24 hours. The results show that compared with those of LSTM, 1DCNN and BP, the root mean square error (RMSE) of 1DCNN-LSTM is reduced by 5.221%, 19.350%, and 9.253%, and the mean absolute error (MAE) is reduced by 4.419%, 17.520% and 8.089%, respectively. This research method provides a reference for the accurate prediction of air temperature.
Keywords:1DCNN neural network   LSTM neural network   multi-information fusion   temperature forecast   single station hourly forecast
点击此处可从《热带气象学报》浏览原始摘要信息
点击此处可从《热带气象学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号