地学前缘 ›› 2020, Vol. 27 ›› Issue (1): 112-122.DOI: 10.13745/j.esf.2020.1.13
收稿日期:
2019-03-29
修回日期:
2019-08-30
出版日期:
2020-01-20
发布日期:
2020-01-20
通信作者:
庞忠和
作者简介:
天 娇(1990—),女,博士,主要从事地热地质方向的研究工作。E-mail: tianjiao@mail.iggcas.ac.cn
基金资助:
TIAN Jiao1,2,3(), PANG Zhonghe1,2,3,*(
), ZHANG Rui4
Received:
2019-03-29
Revised:
2019-08-30
Online:
2020-01-20
Published:
2020-01-20
Contact:
PANG Zhonghe
摘要:
增强地热系统(EGS)是开采低渗透率热岩体中热能的技术,属于广义的地热储工程。其中,作为换热介质被注入岩体并在换热后返回地表的返排液,不仅是岩体地球化学特征的信息载体,而且其物理化学行为直接影响着EGS系统的运行效果。FixAl化学热力学模拟和水同位素十三线图解在天然水热系统评价中得到了广泛应用,对返排液研究的实用性则是文章的核心问题。文中收集了全球主要EGS项目的返排液资料,基于FixAl方法分析矿物与返排液的化学平衡状态,并计算了流体在深部的热交换温度,用同位素模型验证了EGS系统中原生卤水的驱替过程。研究结果表明,上述方法在EGS返排液研究中是适用的。此外,返排液的化学特征对EGS的指示意义还包括厘定原生卤水在返排液中所占比例,识别岩浆挥发分溶解及储层改造时的添加剂残留,预测结垢趋势和流体腐蚀性等。未来需要通过更多的实验和模拟方法深入研究返排液的化学特征,建立EGS的热-水-力-化学(THMC)耦合模型,为科学开发深层地热能提供依据。
中图分类号:
天娇, 庞忠和, 张睿. FixAl及同位素方法在EGS返排液研究中的应用[J]. 地学前缘, 2020, 27(1): 112-122.
TIAN Jiao, PANG Zhonghe, ZHANG Rui. The application of FixAl and isotopic methods in the study of flowback fluids from Enhanced Geothermal Systems (EGS)[J]. Earth Science Frontiers, 2020, 27(1): 112-122.
项目 | 国家 | 试验 年份 | 井深/m | 注-采井 间距/m | 储层 温度/℃ | 返排液 温度/℃ | 返排液 pH | 注水流速 /(L·s-1) | 储层 岩性 | 质量浓度/(mg·L-1) | 参考文献 | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDS | Na | K | Ca | Mg | Cl | SO4 | HCO3 | F | SiO2 | Fe | Al | |||||||||||||||||||||||
Soultz-sous- Forêts | 法国 | 1997 | 3 876 | 450 | 160 | 142 | 4.8 | 25 | 富黑云母及 角闪石花岗岩 | 90 690.25 | 24 472 | 3 377.4 | 6 880 | 139.44 | 55 522 | 225.6 | 147.62 | 4 | 139.8 | 30.1 | na | [11] | ||||||||||||
Bad Urach | 德国 | 1978 | 3 325 | na | 143 | 143 | 4.2 | na | 花岗片麻岩 | 2 144.2 | 558.9 | 159.5 | 150 | 0.4 | 1 275.4 | na | na | na | 156.6 | 110.9 | 0.6 | [12] | ||||||||||||
Fenton Hill | 美国 | 1992 | 4 010 | 310 | 327 | 182 | 7 | 5.5~6.5 | 黑云母花 岗闪长岩 | 2 632.65 | 899.3 | 88.9 | 18 | 0.1 | 955 | 377.3 | 588.1 | 17 | 423.6 | 0.800 8 | 1.2 | [13] | ||||||||||||
Hijiori | 日本 | 2002 | 1 800~ 2 200 | 130 | 260 | 170 | 9.03 | 16.67 | 石英闪长岩 | 1 092.9 | 373.9 | 54.6 | 8.3 | 0.1 | 391.4 | 202.1 | 125 | na | 370.5 | na | na | [14] | ||||||||||||
Ogachi | 日本 | 1993 | 1 100 | 80 | 170~230 | 108 | na | 12.5~20 | 花岗闪长岩 | 804.5 | 299 | 17.6 | 4 | 0 | 49.7 | 153.6 | 561.2 | 6.7 | 162 | na | na | [15] | ||||||||||||
Rosemanowes | 英国 | 1988 | 2 780 | 250 | 99.8 | 99.8 | 8.8 | 21.6 | 花岗岩 | 302.34 | 100.7 | 3.4 | 13.76 | 0.08 | 73.1 | 74.4 | 73.8 | 11.4 | 65.4 | 0.02 | 0.2 | [16] | ||||||||||||
Habanero Cooper Basin | 澳大 利亚 | 2008 | 4 421 | 560 | 250 | 200 | 7.6 | 14 | 花岗岩 | 12 750.4 | 4 942.9 | 643.5 | 25.45 | 0.45 | 8 235 | 36 | na | 17 | 153 | na | na | [16-18] |
表1 世界范围内7个EGS项目的相关物理化学参数汇编
Table 1 Compilation of selected physico-chemical data from seven EGS projects around the world
项目 | 国家 | 试验 年份 | 井深/m | 注-采井 间距/m | 储层 温度/℃ | 返排液 温度/℃ | 返排液 pH | 注水流速 /(L·s-1) | 储层 岩性 | 质量浓度/(mg·L-1) | 参考文献 | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDS | Na | K | Ca | Mg | Cl | SO4 | HCO3 | F | SiO2 | Fe | Al | |||||||||||||||||||||||
Soultz-sous- Forêts | 法国 | 1997 | 3 876 | 450 | 160 | 142 | 4.8 | 25 | 富黑云母及 角闪石花岗岩 | 90 690.25 | 24 472 | 3 377.4 | 6 880 | 139.44 | 55 522 | 225.6 | 147.62 | 4 | 139.8 | 30.1 | na | [11] | ||||||||||||
Bad Urach | 德国 | 1978 | 3 325 | na | 143 | 143 | 4.2 | na | 花岗片麻岩 | 2 144.2 | 558.9 | 159.5 | 150 | 0.4 | 1 275.4 | na | na | na | 156.6 | 110.9 | 0.6 | [12] | ||||||||||||
Fenton Hill | 美国 | 1992 | 4 010 | 310 | 327 | 182 | 7 | 5.5~6.5 | 黑云母花 岗闪长岩 | 2 632.65 | 899.3 | 88.9 | 18 | 0.1 | 955 | 377.3 | 588.1 | 17 | 423.6 | 0.800 8 | 1.2 | [13] | ||||||||||||
Hijiori | 日本 | 2002 | 1 800~ 2 200 | 130 | 260 | 170 | 9.03 | 16.67 | 石英闪长岩 | 1 092.9 | 373.9 | 54.6 | 8.3 | 0.1 | 391.4 | 202.1 | 125 | na | 370.5 | na | na | [14] | ||||||||||||
Ogachi | 日本 | 1993 | 1 100 | 80 | 170~230 | 108 | na | 12.5~20 | 花岗闪长岩 | 804.5 | 299 | 17.6 | 4 | 0 | 49.7 | 153.6 | 561.2 | 6.7 | 162 | na | na | [15] | ||||||||||||
Rosemanowes | 英国 | 1988 | 2 780 | 250 | 99.8 | 99.8 | 8.8 | 21.6 | 花岗岩 | 302.34 | 100.7 | 3.4 | 13.76 | 0.08 | 73.1 | 74.4 | 73.8 | 11.4 | 65.4 | 0.02 | 0.2 | [16] | ||||||||||||
Habanero Cooper Basin | 澳大 利亚 | 2008 | 4 421 | 560 | 250 | 200 | 7.6 | 14 | 花岗岩 | 12 750.4 | 4 942.9 | 643.5 | 25.45 | 0.45 | 8 235 | 36 | na | 17 | 153 | na | na | [16-18] |
矿物 | lg(Q/K) | ||||||
---|---|---|---|---|---|---|---|
Soultz-sous-Forêts | Bad Urach | Fenton Hill | Hijiori | Ogachi | Rosemanowes | Habanero Cooper Basin | |
方解石 | -2.027 8 | -90.393 0 | 0.827 8 | 1.467 9 | 1.130 3 | 1.163 5 | -98.693 0 |
白云石 | -4.530 0 | -182.145 7 | 0.476 8 | 2.101 5 | -51.484 8 | 1.109 6 | -197.817 4 |
二氧化硅 | -0.624 1 | -0.660 4 | -0.288 2 | -0.809 4 | -0.812 4 | -1.011 8 | -0.834 3 |
表2 易沉淀矿物在井口温度下的lg(Q/K)值
Table 2 lg(Q/K) values of precipitable minerals at the wellhead temperature
矿物 | lg(Q/K) | ||||||
---|---|---|---|---|---|---|---|
Soultz-sous-Forêts | Bad Urach | Fenton Hill | Hijiori | Ogachi | Rosemanowes | Habanero Cooper Basin | |
方解石 | -2.027 8 | -90.393 0 | 0.827 8 | 1.467 9 | 1.130 3 | 1.163 5 | -98.693 0 |
白云石 | -4.530 0 | -182.145 7 | 0.476 8 | 2.101 5 | -51.484 8 | 1.109 6 | -197.817 4 |
二氧化硅 | -0.624 1 | -0.660 4 | -0.288 2 | -0.809 4 | -0.812 4 | -1.011 8 | -0.834 3 |
图6 水同位素十三线图解(a)和Fenton Hill流体循环试验注入水与不同阶段返排液中水的δD-δ18O关系图(b) ①—全球平均大气降水线(GMWL);⑤—与经历长期水岩反应的地下水混合;⑥—与安山水混合; ⑦—蒸发线;⑧—与海水混合;其他标注参照文献[20]。
Fig.6 Models of stable isotopes in 13 processes (a) and plots of δD-δ18O for injected water and flowback fluid samples in different stages of the circulation test in Fenton Hill EGS (b)
图8 1997年Soultz-sous-Forêts EGS循环试验中流体密度随时间变化(据文献[18])
Fig.8 Fluid density as observed during the 1997 circulation test of Soultz-sous-ForêtsEGS. Adapted from [18].
图9 不同温度下溶液盐度与比热容关系(据文献[40]) t_20, t_100,t_180分别代表20 ℃,100 ℃,180 ℃。
Fig.9 Relationship of salinity and specific heat at different temperatures. Adapted from [40].
[1] | 国家能源局. 地热能术语: NB/T 10097—2018 [S]. 北京: 中国石化出版社, 2018: 1-24. |
[2] | SCHULTE T, ZIMMERMANN G, VUATAZ F, et al. Enhancing geothermal reservoirs[J]. Geothermal Energy Systems: Exploration, Development, and Utilization, 2010: 173-243. |
[3] | 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32):25-31. |
[4] |
ZHANG C, JIANG G Z, SHI Y, et al. Terrestrial heat flow and crustal thermal structure of the Gonghe-Guide area, northeastern Qinghai-Tibetan Plateau[J]. Geothermics, 2018, 72:182-192.
DOI URL |
[5] | TESTER J W, ANDERSON B, BATCHELOR A, et al. The future of geothermal energy: impact of enhanced geothermal systems (egs) on the united states in the 21st century [R]. Cambridge: Massachusetts Institute of Technolgy, 2006: 209. |
[6] | HORNE R N. What does the future hold for geothermal energy?[C]. New Zealand Geothermal Workshop, Stanford University, CA, USA, 2011. |
[7] |
BREEDE K, DZEBISASHVILI K, LIU X L, et al. A systematic review of enhanced (or engineered) geothermal systems: past, present and future[J]. Geothermal Energy, 2013, 1(1):4.
DOI URL |
[8] |
GAUCHER E, SCHOENBALL M, HEIDBACH O, et al. Induced seismicity in geothermal reservoirs: a review of forecasting approaches[J]. Renewable and Sustainable Energy Reviews, 2015, 52:1473-1490.
DOI URL |
[9] |
BROWND W, DUCHANE D V. Scientific progress on the Fenton Hill HDR Project since 1983[J]. Geothermics, 1999, 28(4/5):591-601.
DOI URL |
[10] | POTTER R, ROBINSON E, SMITH M. Method of extracting heat from dry geothermal reservoirs [R]. Washington DC: Office of Scientific and Technical Information (OSTI), U.S. Patent and Trademark Offic, 1974. |
[11] | DURST P, VUATAZ F D. Fluid-rock interactions in hot dry rock reservoirs. A review of the HDR sites and detailed investigations of the Soultz-sous-Forets system [C]//Proceedings World Geothermal Congress. Kyushu-Tohoku, Japan, 2000. |
[12] | ALTHAUS E. Geochemical problems in fluid-rock interaction[J]. The Urach Geothermal Project, 1982, 12:123-133. |
[13] | DUCHANE D V, WINCHESTER W W. Hot dry rock energy progress report fiscal year 1992 [R]. Washington DC: Office of Scientific and Technical Information (OSTI), U.S. Patent and Trademark Office, 1993. |
[14] | YANAGISAWA N. Ca and CO2 transport and scaling in the Hijiori HDR system, Japan [C]//Proceedings World Geothermal Congress. Kyushu-Tohoku, Japan, 2010. |
[15] | KIHO K, MAMBO V. Reservoir characterization by geochemical method at the Ogachi HDR site, Japan [C]//Proceedings of World Geothermal Congress. 1995: 2707-2711. |
[16] | YANAGISAWA N, NGOTHAI Y, ROSE P, et al. Geochemical behavior of EGS reservoir during first circulation test at Habanero site, Cooper basin, Australia[J]. Journal of the Geothermal Research Society of Japan, 2011, 33(3):125-130. |
[17] | KUNCORO G, NGOTHAI Y, O’NEILL B, et al. Preliminary kinetic study on rock-fluid interaction of the enhanced geothermal systems in Cooper basin, South Australia[C]. New Zealand geothermal workshop. 2011. |
[18] | KUNCORO G B. Fluid-rock interaction studies on an enhanced geothermal system in the Cooper basin, South Australia[D]. Adelaide: The University of Adelaide, 2015. |
[19] |
PANGZ H, REED M. Theoretical chemical thermometry on geothermal waters: problems and methods[J]. Geochimica et Cosmochimica Acta, 1998, 62(6):1083-1091.
DOI URL |
[20] |
PANGZ H, KONG Y L, LI J, et al. An isotopic geoindicator in the hydrological cycle[J]. Procedia Earth and Planetary Science, 2017, 17:534-537.
DOI URL |
[21] | BAUMGARTNER J, JUNG R, GERARD A, et al. The European HDR project at Soultz-sous-Forets: stimulation of the second deep well and first circulation experiments [R]. Brussels: European Commission, 1996. |
[22] | 郭剑, 陈继良, 曹文炅, 等. 增强型地热系统研究综述[J]. 电力建设, 2014, 35(4):10-24. |
[23] | BARIA R, MICHELET S, BAUMGARTNER J, et al. Microseismic monitoring of the world’s largest potential HDR reservoir [C]//Proceedings of the twenty-ninth workshop on geothermal reservoir engineering. Palo Alto: Stanford University, 2004. |
[24] | RICHARDS H G, SAVAGE D, ANDREWS J N. Granite-water reactions in an experimental hot dry rock geothermal reservoir, Rosemanowes test site, Cornwall, UK[J]. Applied Geochemistry, 1992, 7(3):193-222. |
[25] | BEALL J, WRIGHT M, HULEN J. Pre- and post-development influences on fieldwide geysers NCG concentrations[J]. Geothermal Resources Council Transaction, 2007, 31:427-434. |
[26] |
GARCIA J, HARTLINE C, WALTERS M, et al. The Northwest Geysers EGS demonstration project, California[J]. Geothermics, 2016, 63:97-119.
DOI URL |
[27] | BAUMGARTNER J, GERARD A, BARIA R, et al. Circulating the HDR reservoir at Soultz: maintaining production and injection flow in complete balance [C]//Proceedings of the twenty-third workshop on geothermal reservoir engineering. Palo Alto: Stanford University, 1998. |
[28] | BROWN D W. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water [C]//Proceedings of the twenty-fifth workshop on geothermal reservoir engineering. Palo Alto: Stanford University, 2000: 233-238. |
[29] | UEDA A, KATO K, OHSUMI T, et al. Experimental and theoretical studies on CO2 sequestration into geothermal fields[C]. World Geothermal Congress, Antalya, Turkey, 2005. |
[30] |
PRUESS K. Enhanced Geothermal Systems(EGS) Using CO2 as working fluid: a novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35(4):351-367.
DOI URL |
[31] | PRUESS K. Enhanced geothermal systems (EGS) comparing water with CO2 as heat transmission fluids [R]. Berkeley, CA, U.S.: Lawrence Berkeley National Laboratory, 2007. |
[32] | XU T, PRUESS K. Reactive transport modeling to study fluid-rock interactions in enhanced geothermal systems (EGS) with CO2 as working fluid [C]//Proceedings of World Geothermal Congress. Bali, Indonesia, 2010: 25-29. |
[33] | REMOROZA A, DOROODCHI E, MOGHTADERI B. CO2-EGS in hot dry rock: preliminary results from CO2-rock interaction experiments [C]//Proceedings of 37th workshop on geothermal reservoir engineering. Palo Alto: Stanford University, 2012. |
[34] | FOUILLAC C, SANJUAN B, GENTIER S, et al. Could sequestration of CO2 be combined with the development of enhanced geothermal systems[C]. Third annual conference on carbon capture and sequestration, Alexandria, VA. 2004. |
[35] |
REED M, SPYCHER N. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution[J]. Geochimica et Cosmochimica Acta, 1984, 48(7):1479-1492.
DOI URL |
[36] |
GRIGSBYC O, TESTER J W, TRUJILLO P E Jr, et al. Rock-water interactions in the Fenton Hill, New Mexico, Hot dry rock geothermal systems I. Fluid mixing and chemical geothermometry[J]. Geothermics, 1989, 18(5/6):629-656.
DOI URL |
[37] |
PAUWELS H. Geochemical results of a single-well hydraulic injection test in an experimental hot dry rock geothermal reservoir, Soultz-sous-Forêts, Alsace, France[J]. Applied Geochemistry, 1997, 12(5):661-673.
DOI URL |
[38] | KIHO K, MAMBO V. Fluid geochemistry of hydraulic fracturing at the Ogachi HDR site[J]. Geothermal Resources Council Transactions, 1994(18):453-453. |
[39] |
GRIGSBY C O, TESTER J W, TRUJILLO P E, et al. Rock-water interactions in hot dry rock geothermal systems: field investigations of in situ geochemical behavior[J]. Journal of Volcanology and Geothermal Research, 1983, 15(1/2/3):101-136.
DOI URL |
[40] |
BROMLEYL A, DIAMOND A E, SALAMI E, et al. Heat capacities and enthalpies of sea salt solutions to 200 deg[J]. Journal of Chemical & Engineering Data, 1970, 15(2):246-253.
DOI URL |
[41] | GRUNBERG L. Properties of sea water concentrates [C]//Proceedings of the third international symposium on fresh water from the Sea. Geneva, Switzerland, 1970 (1):31-39. |
[42] |
GUO Q H, LIU M L, LI J X, et al. Acid hot springs discharged from the Rehai hydrothermal system of the Tengchong Volcanic Area (China): formed via magmatic fluid absorption or geothermal steam heating?[J]. Bulletin of Volcanology, 2014, 76(10):868.
DOI URL |
[43] |
GUO Q H, NORDSTROM D K, MCCLESKEY R B. Towards understanding the puzzling lack of acid geothermal springs in Tibet (China): insight from a comparison with Yellowstone (USA) and some active volcanic hydrothermal systems[J]. Journal of Volcanology and Geothermal Research, 2014, 288:94-104.
DOI URL |
[44] |
ELLIS A, GIGGENBACH W. Hydrogen sulphide ionization and sulphur hydrolysis in high temperature solution[J]. Geochimica et Cosmochimica Acta, 1971, 35(3):247-260.
DOI URL |
[45] | ZYVOLOSKI G, AAMODT R, AGUILAR R. Evaluation of the second hot dry rock geothermal energy reservoir: results of phase I, Run Segment 5 [R]. New Mexico, USA: Los Alamos National Laboratory, 1981. |
[46] |
PORTIER S, VUATAZ F D, NAMI P, et al. Chemical stimulation techniques for geothermal wells: experiments on the three-well EGS system at Soultz-sous-Forêts, France[J]. Geothermics, 2009, 38(4):349-359.
DOI URL |
[47] |
PORTIER S, VUATAZ F D. Developing the ability to model acid-rock interactions and mineral dissolution during the RMA stimulation test performed at the Soultz-sous-Forêts EGS Site, France[J]. Comptes Rendus Geoscience, 2010, 342(7/8):668-675.
DOI URL |
[48] | SANJUAN B, ROSE P, GERARD A, et al. Geochemical monitoring at Soultz-sous-Foręts (France) between October 2006 and March 2007, after the chemical stimulations (RMA, NTA and OCA) carried out in the wells GPK-4 and GPK-3[C]. EHDRA Scientific Conference. Paris, France, 2007. |
[1] | 许家鼎, 张重远, 张浩, 白金朋, 张士安, 张盛生, 秦向辉, 孙东生, 何满潮, 吴满路. 青海共和盆地干热岩地应力测量及其储层压裂改造意义分析[J]. 地学前缘, 2024, 31(6): 130-144. |
[2] | 齐晓飞, 肖勇, 上官拴通, 苏野, 王红科, 李英英, 胡志兴. 马头营深层干热岩人工造储裂缝扩展机理研究与应用[J]. 地学前缘, 2024, 31(6): 224-234. |
[3] | 蒋政, 舒彪, 谭静强. 二氧化碳基增强型地热系统储层换热研究现状及展望[J]. 地学前缘, 2024, 31(6): 235-251. |
[4] | 上官拴通, 田兰兰, 潘苗苗, 杨风良, 岳高凡, 苏野, 齐晓飞. 干热岩开发断层滑动及诱发地震风险研究:以唐山马头营干热岩场地为例[J]. 地学前缘, 2024, 31(6): 252-260. |
[5] | 杨志波, 季汉成, 鲍志东, 史燕青, 赵雅静, 向鹏飞. 白云石晶体结构和地球化学特征对沉积环境响应:以扬子地台晚埃迪卡拉纪灯影组白云岩为例[J]. 地学前缘, 2024, 31(3): 68-79. |
[6] | 张保建, 雷玉德, 赵振, 唐显春, 罗银飞, 王贵玲, 高俊, 张代磊. 共和盆地干热岩形成的地球动力学过程与成因机制[J]. 地学前缘, 2023, 30(5): 384-401. |
[7] | 孟康, 邵德勇, 张六六, 李立武, 张瑜, 罗欢, 宋辉, 张同伟. 鄂西宜昌地区寒武系水井沱组页岩破碎气地球化学特征及其对页岩含气性的指示意义[J]. 地学前缘, 2023, 30(3): 14-27. |
[8] | 董小宇, 孔若颜, 颜丹平, 邱亮, 邱骏挺. 辽东半岛青城子地区晚三叠世构造岩脉成因及其金成矿意义[J]. 地学前缘, 2023, 30(2): 215-238. |
[9] | 邢世平, 吴萍, 胡学达, 郭华明, 赵振, 袁有靖. 化隆-循化盆地含水层沉积物地球化学特征及其对地下水氟富集的影响[J]. 地学前缘, 2023, 30(2): 526-538. |
[10] | 何碧竹, 郑孟林, 贠晓瑞, 蔡志慧, 焦存礼, 陈希节, 郑勇, 马绪宣, 刘若涵, 陈辉明, 张盛生, 雷敏, 付国强, 李振宇. 青海共和盆地结构构造与能源资源潜力[J]. 地学前缘, 2023, 30(1): 81-105. |
[11] | 文冬光, 宋健, 刁玉杰, 张林友, 张福存, 张森琦, 叶成明, 朱庆俊, 史彦新, 金显鹏, 贾小丰, 李胜涛, 刘东林, 王新峰, 杨骊, 马鑫, 吴海东, 赵学亮, 郝文杰. 深部水文地质研究的机遇与挑战[J]. 地学前缘, 2022, 29(3): 11-24. |
[12] | 邢世平, 郭华明, 吴萍, 胡学达, 赵振, 袁有靖. 化隆—循化盆地不同类型含水层组高氟地下水的分布及形成过程[J]. 地学前缘, 2022, 29(3): 115-128. |
[13] | 李海明, 李梦娣, 肖瀚, 刘学娜. 天津平原区浅层地下水水化学特征及碳酸盐风化碳汇研究[J]. 地学前缘, 2022, 29(3): 167-178. |
[14] | 林聪业, 孙占学, 高柏, 华恩祥, 张海阳, 杨芬, 高杨, 蒋文波, 姜心月. 拉萨地区地下水水化学特征及形成机制研究[J]. 地学前缘, 2021, 28(5): 49-58. |
[15] | 张景涛, 史浙明, 王广才, 姜军, 杨炳超. 柴达木盆地大柴旦地区地下水水化学特征及演化规律[J]. 地学前缘, 2021, 28(4): 194-205. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 370
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 264
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||