首页 | 本学科首页   官方微博 | 高级检索  
     

流体饱和多孔介质波动方程的有限元解法
引用本文:邵秀民, 蓝志凌. 流体饱和多孔介质波动方程的有限元解法[J]. 地球物理学报, 2000, 43(02): 264-278,
作者姓名:邵秀民  蓝志凌
作者单位:中国科学院数学研究所,北京100080
摘    要:讨论了流体饱和多孔介质中波传播问题的有限元解法,首先在Biot理论的基础 上,概述了数学问题的提法,然后提出了一种新型简便的人工边界上的无反射边界条件,同时 给出了有人工边界时流体饱和多孔介质波动方程的有限元计算公式.数值试验的结果表明, 本文提出的无反射边界条件和数值方法均很有效.

关 键 词:流体饱和多孔介质   波动方程   无反射边界条件   有限元解法
收稿时间:1998-07-03
修稿时间:1999-04-30

FINITE ELEMENT METHODS FOR THE EQUATIONS OF WAVES IN FLUID-SATURATED POROUS MEDIA
SHAO XIU-MIN, LAN ZHI-LING. FINITE ELEMENT METHODS FOR THE EQUATIONS OF WAVES IN FLUID-SATURATED POROUS MEDIA[J]. Chinese Journal of Geophysics (in Chinese), 2000, 43(02): 264-278,
Authors:SHAO XIU-MIN  LAN ZHI-LING
Affiliation:Institute of Mathematics, Chinese Academy of Sciences,Beijing 100080, China
Abstract:In this paper, wave propagation in fluid-saturated porous media is discussed. A mathematical model based on the Blot's theory is described. and a new kind of non-reflecting boundary conditions on artificial boundaries is developed. This conditions has simple form and is convenient to be used. Some finite element formulas are given for the wave equations in fluid-saturated porous media with the non-reflecting boundary condition mentioned above. The numerical results show that our non-reflecting boundary condition and numerical methods are effective.
Keywords:Fluid-saturated porous media  Wave equation  Non-reflecting boundary condition  Finite element method
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号