首页 | 本学科首页   官方微博 | 高级检索  
     

全极化SAR数据的最大后验概率分类
引用本文:梁志锋, 凌飞龙, 陈尔学. 全极化SAR数据的最大后验概率分类[J]. 武汉大学学报 ( 信息科学版), 2013, 38(6): 648-651.
作者姓名:梁志锋  凌飞龙  陈尔学
作者单位:1福州大学空间信息工程研究中心;2中国林业科学研究院资源信息研究所
基金项目:国家青年科学基金资助项目,福建省科技计划资助项目,中欧"龙计划"合作项目
摘    要:结合后验概率对分类的影响和全极化SAR数据特点,提出了一种全极化SAR数据分类方法。首先将全极化SAR数据的协方差矩阵转换为9个服从正态分布的强度量;然后通过迭代分类计算类别出现的概率,对9个强度量进行基于最大后验概率的分类。以黑龙江省逊克县境内的一景ALOS PALSAR全极化数据为例,用该方法进行分类,总体精度和Kappa系数分别达到81.34%和0.84,优于传统的最大似然分类方法。

关 键 词:分类  SAR  极化  后验概率
收稿时间:2013-01-25
修稿时间:2013-01-25

Classification of Full-polarimetric Synthetic Aperture Radar Data with Maximum a Posteriori
LIANG Zhifeng, LING Feilong, CHEN Erxue. Classification of Full-polarimetric Synthetic Aperture Radar Data with Maximum a Posteriori[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 648-651.
Authors:LIANG Zhifeng  LING Feilong  CHEN Erxue
Affiliation:1Spatical Information Research Center,Fuzhou University,2 Xueyuan Road,Fuzhou 350002,China;2Institute of Forest Resources Information Research,Chinese Academy of Forest,Dongxiaofu,Xiangshan Road,Beijing 100091,China
Abstract:Considering the influence of the posterior and the statistic distributions of full-polarimetric SAR data,we proposed a new classification method of full polarimetric SAR data.First,the covariance matrix of polarization SAR data was converted to nine intensity quantities with normal distribution.Then,the probability of occurance for each class was calculated with iterative initial classification.Finally,the nine intensity images were classified with maximum likelihood classification method taking the probabilities of occurance for the classes into account.We applied the developed method to the ALOS PALSAR full-polarimetric data of Xunke County,Heilongjiang Province.The overall accuracy is 81.34% and the Kappa coefficient 0.84.The developed method showed higher accuracy than that from the traditional maximum likelihood classifier.This indicates that our method can improve the accuracy of classification.
Keywords:classification  SAR  radar polarimetry  posteriori
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号