首页 | 本学科首页   官方微博 | 高级检索  
     

机器学习方法在预测泉水潜在出露位置中的应用
引用本文:李慧香,潘云,宫辉力,孙颖. 机器学习方法在预测泉水潜在出露位置中的应用[J]. 地球信息科学学报, 2021, 23(6): 1028-1039. DOI: 10.12082/dqxxkx.2021.200522
作者姓名:李慧香  潘云  宫辉力  孙颖
作者单位:1.首都师范大学资源环境与旅游学院,北京 1000482.水资源安全北京实验室,北京 1000483.北京市水文地质工程地质大队(北京市地质环境监测总站),北京 100195
摘    要:泉水出露受到多种因素影响,在传统地质勘查手段之外,各种模型方法及影响因子预测手段,也被越来越多地应用于泉水的研究中.本文尝试利用机器学习的方法进行泉水出露位置的预测研究.根据北京市野外调查,确定了1378个测试样本点,选取了高程、坡度、坡向、地形湿度指数、径流强度指数、距河流距离、距断裂距离、岩性、归一化植被指数及土地...

关 键 词:泉水潜在出露  证据权重  随机森林模型  分类回归树模型  北京市
收稿时间:2020-09-11

Application of Machine Learning Method in Prediction of Potential Exposure Position of Spring Water
LI Huixiang,PAN Yun,GONG Huili,SUN Ying. Application of Machine Learning Method in Prediction of Potential Exposure Position of Spring Water[J]. Geo-information Science, 2021, 23(6): 1028-1039. DOI: 10.12082/dqxxkx.2021.200522
Authors:LI Huixiang  PAN Yun  GONG Huili  SUN Ying
Affiliation:1. Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China2. College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China3. Beijing Institute of Hydrogeology and Engineering Geology ( Beijing geological environment monitoring station), Beijing 100195, China
Abstract:The exposure of spring is usually difficult to be monitored over mountainous terrain. In this study we investigated the performance of statistical models (Weight of Evidence) and two machine learning models (Random Forest and Classification and Regression Tree) in predicting the potential exposure positions of spring water in Beijing. A total of 1378 springs from field survey were used for model training and validation. The environmental factors included elevation, slope, aspect, topographic wetness index, stream power index, distance to rivers, distance to faults, lithology, normalized difference vegetation index, and land use. The predicted results from the three models are validated using the receiver operating characteristics curve. The area under the curve for the Weight of Evidence model was 0.80, while that for Classification and Regression Tree and Random Forest the AUC was 0.81 and 0.86, respectively. Therefore, the Random Forest model has the best prediction performance. Moreover, the Random Forest model revealed that lithology, distance to faults, and distance to rivers had the greatest impact on the spring exposure. This study shows that the machine learning method has good prediction ability and is expected to be applied in future spring protection and restoration researches.
Keywords:Groundwater spring potential map  weight of evidence  random forest  classification regression tree  Beijing  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《地球信息科学学报》浏览原始摘要信息
点击此处可从《地球信息科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号