首页 | 本学科首页   官方微博 | 高级检索  
     

散射波积分方程的Adomian分解解法
引用本文:汪燚林, 董良国. 2021. 散射波积分方程的Adomian分解解法. 地球物理学报, 64(10): 3701-3717, doi: 10.6038/cjg2021O0298
作者姓名:汪燚林  董良国
作者单位:同济大学海洋地质国家重点实验室, 上海 200092
基金项目:国家重点研发计划;国家自然科学基金
摘    要:

在背景模型基础上,求解模型扰动后的地震波散射场,这是目前地震反演中的一个关键步骤.本文将计算数学中求解非线性积分方程的Adomian分解方法,应用到求解标量波散射场的Lippmann-Schwinger积分方程和Ricatti积分方程中,分别得到了散射场的Born序列解和Rytov序列解.通过一维和二维数值算例说明:在满足一定的条件下,散射场的这两种序列解稳定收敛,与传统的Born和Rytov近似解相比,引入散射序列中的高阶项可以更精确地描述地震波散射场.



关 键 词:散射波   Lippmann-Schwinger积分方程   Ricatti积分方程   Adomian分解方法   Born散射序列   Rytov散射序列
收稿时间:2020-08-05
修稿时间:2021-02-23

Adomian decomposition method of integral equations for scattered waves
WANG YiLin, DONG LiangGuo. 2021. Adomian decomposition method of integral equations for scattered waves. Chinese Journal of Geophysics (in Chinese), 64(10): 3701-3717, doi: 10.6038/cjg2021O0298
Authors:WANG YiLin  DONG LiangGuo
Affiliation:State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
Abstract:
During the seismic inversion, it is a key step to calculate the scattered waves after the media is perturbed. In this paper, the Adomian decomposition method for solving the integral equations in computational mathematics is applied to solve the Lippmann-Schwinger integral equation and Ricatti integral equation in seismology. As a result, the Born and Rytov scattering series solutions for the scattered waves are obtained. Numerical examples in both one and two dimensions show that these scattering series are convergent under some certain conditions. Meanwhile, compared to the conventional Born and Rytov approximate solutions, it is more accurate to describe the scattered waves under some conditions if the higher-order terms in Born or Rytov scattering series are included.
Keywords:Scattered waves  Lippmann-Schwinger integral equation  Ricatti integral equation  Adomian decomposition method  Born scattering series  Rytov scattering series
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号