超深随钻方位电磁波测井探测特性及参数敏感性分析

张盼, 邓少贵, 胡旭飞, 王磊, 王正楷, 袁习勇, 蔡联云. 2021. 超深随钻方位电磁波测井探测特性及参数敏感性分析. 地球物理学报, 64(6): 2210-2219, doi: 10.6038/cjg2021O0087
引用本文: 张盼, 邓少贵, 胡旭飞, 王磊, 王正楷, 袁习勇, 蔡联云. 2021. 超深随钻方位电磁波测井探测特性及参数敏感性分析. 地球物理学报, 64(6): 2210-2219, doi: 10.6038/cjg2021O0087
ZHANG Pan, DENG ShaoGui, HU XuFei, WANG Lei, WANG ZhengKai, YUAN XiYong, CAI LianYun. 2021. Detection performance and sensitivity of logging-while-drilling extra-deep azimuthal resistivity measurement. Chinese Journal of Geophysics (in Chinese), 64(6): 2210-2219, doi: 10.6038/cjg2021O0087
Citation: ZHANG Pan, DENG ShaoGui, HU XuFei, WANG Lei, WANG ZhengKai, YUAN XiYong, CAI LianYun. 2021. Detection performance and sensitivity of logging-while-drilling extra-deep azimuthal resistivity measurement. Chinese Journal of Geophysics (in Chinese), 64(6): 2210-2219, doi: 10.6038/cjg2021O0087

超深随钻方位电磁波测井探测特性及参数敏感性分析

  • 基金项目:

    国家自然科学基金(41674131,41904109,42074134),中国石油科技创新基金(2020D-5007-0304)和页岩油气富集机理与有效开发国家重点实验室基金(20-YYGZ-KF-GC-11)共同资助

详细信息
    作者简介:

    张盼, 男, 1992年生, 博士, 主要从事电测井方法的研究.E-mail: upczhangpan@163.com

  • 中图分类号: P631

Detection performance and sensitivity of logging-while-drilling extra-deep azimuthal resistivity measurement

  • 本文给出超深随钻方位电磁波测井的仪器天线设计及探测模式信号定义;分析各探测模式的探测性能及对地层电阻率、倾角及各向异性的表征能力;定义方位角、井斜角及地层电阻率的敏感性函数,定性分析不同模式对地层参数的敏感性.研究结果表明,超深随钻方位电磁波测井各探测模式具有不同探测特性,探测模式Ⅰ利用对称设计识别地层边界,消除井斜角及电阻率各向异性的影响,在不同电阻率条件下优选频率及源距,达到最大探测范围;探测模式Ⅱ采用非对称设计,增强对倾角和电阻率各向异性的敏感性,在井斜角为60°时对电阻率变化尤为敏感;探测模式Ⅲ在任意井斜角下均不具有方位敏感性,能够有效表征地层电阻率,在水平井条件下受地层各向异性影响最小;探测模式Ⅳ在高角度及水平井条件下,能够有效识别电阻率各向异性信息.

  • 加载中
  • 图 1 

    超深随钻方位电磁波测井线圈结构及示意图

    Figure 1. 

    Coil configuration and schematic diagram of the EDARM

    图 2 

    各探测模式空间分布及幅度比探测曲线

    Figure 2. 

    Spatial distribution and amplitude ratio curves of each detection mode

    图 3 

    不同井斜角条件下幅度比信号随方位变化

    Figure 3. 

    Amplitude ratios varying with azimuth in different dipping angles

    图 4 

    超深随钻方位电磁波测井与方位电磁波测井地质信号对比

    Figure 4. 

    Comparison of geo-signal between the EDARM and the ARM

    图 5 

    不同源距及频率条件下的探边能力

    Figure 5. 

    Capability of boundary detection under different source distances and frequencies

    图 6 

    不同井斜及电阻率对比度条件下信号响应规律

    Figure 6. 

    The law of signal response under different dipping angles and resistivity contrasts

    图 7 

    信号幅度及探测模式受井斜与各向异性影响

    Figure 7. 

    Influence of well dipping angle and anisotropy on signal amplitude and detection mode Ⅲ

    图 8 

    分量信号及探测模式相位受井斜与各向异性的响应

    Figure 8. 

    Influence of well dipping angle and anisotropy on component signal phase and detection mode Ⅲ

    图 9 

    超深随钻方位电磁波测井探测模式对方位角敏感性

    Figure 9. 

    Sensitivity of detection mode of EDARM to azimuth

    图 10 

    超深随钻方位电磁波测井探测模式对井斜角敏感性

    Figure 10. 

    Sensitivity of detection mode of EDARM to the dipping angle

    图 11 

    超深随钻方位电磁波测井探测模式对水平电阻率Rh敏感性

    Figure 11. 

    Sensitivity of detection mode of EDARM to the horizontal resistivity Rh

    图 12 

    超深随钻方位电磁波测井探测模式对水平电阻率Rv敏感性

    Figure 12. 

    Sensitivity of detection mode of EDARM to the vertical resistivity Rv

    表 1 

    各探测模式探测性能及定义方式

    Table 1. 

    Performances and definitions of every measurement mode

    模式 探测性能 幅度比 相位差
    模式Ⅰ 地层边界
    模式Ⅱ 各向异性/倾角
    模式Ⅲ 地层电阻率
    模式Ⅳ 各向异性
    下载: 导出CSV
  •  

    Bell C, Hampson J, Eadsforth P, et al. 2006. Navigating and imaging in complex geology with azimuthal propagation resistivity while drilling. //76th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts.

     

    Bittar M, Aki A. 2015. Advancement and economic benefit of geosteering and well-placement technology. The Leading Edge, 34(5): 524-528. doi: 10.1190/tle34050524.1

     

    Bittar M S, Rodney P F. 1996. The effects of rock anisotropy on MWD electromagnetic wave resistivity sensors. The Log Analyst, 37(1): 20-30.

     

    Cedeno D, Alvarez A, Fuentes J, et al. 2017. New insight to apply azimuthal geosteering. //87th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts.

     

    Hagiwara T. 1996. EM log response to anisotropic resistivity in thinly laminated formations with emphasis on 2-MHz resistivity devices. SPE Formation Evaluation, 11(4): 211-218. doi: 10.2118/28426-PA

     

    Hu S, Guo H B, Wang C X, et al. 2017. Influence factors analysis of response characteristics difference between dual laterolog resistivity and LWD resistivity in horizontal well. Progress in Geophysics (in Chinese), 32(5): 1999-2008, doi:10.6038/pg20170519.

     

    Hu X F, Fan Y R. 2018. Huber inversion for logging-while-drilling resistivity measurements in high angle and horizontal wells. Geophysics, 83(4): D113-D125. doi: 10.1190/geo2017-0459.1

     

    Hu X F, Fan Y R, Wu F, et al. 2018. Fast multiple parameter inversion of azimuthal LWD electromagnetic measurement. Chinese Journal of Geophysics (in Chinese), 61(11): 4690-4701, doi:10.6038/cjg2018L0746.

     

    Li H, Zhou J. 2017. Distance of detection for LWD deep and ultra-deep azimuthal resistivity tools. //87th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts.

     

    Li Q M, Omeragic D, Chou L, et al. 2005. New directional electromagnetic tool for proactive geosteering and accurate formation evaluation while drilling. //75th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts.

     

    Li S J, Chen J F, Binford T L Jr. 2014. Using new LWD measurements to evaluate formation resistivity anisotropy at any dip angle. //84th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts.

     

    Seydoux J, Legendre E, Mirto E, et al. 2014. Full 3D deep directional resistivity measurements optimize well placement and provide reservoir-scale imaging while drilling. //84th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts.

     

    Wang H M, Barber T D, Morriss C, et al. 2006. Triaxial induction logging: theory, modeling, inversion and interpretation. //76th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts.

     

    Wang H M, Shen Q Y, Chen J F. 2018. Sensitivity study and uncertainty quantification of azimuthal propagation resistivity measurements. //88th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts.

     

    Wang L, Deng S, Zhang P, et al. 2019a. Detection performance and inversion processing of logging-while-drilling extra-deep azimuthal resistivity measurements. Petroleum Science, 16(5): 1015-1027. doi: 10.1007/s12182-019-00374-4

     

    Wang L, Fan Y F. 2019. Fast inversion of logging-while-drilling azimuthal resistivity measurements for geosteering and formation evaluation. Journal of Petroleum Science and Engineering, 176: 342-351. doi: 10.1016/j.petrol.2019.01.067

     

    Wang L, Li H, Fan Y R. 2019b. Bayesian inversion of logging-while-drilling extra-deep directional resistivity measurements using parallel tempering Markov Chain Monte Carlo sampling. IEEE Transactions on Geoscience and Remote Sensing, 57(10): 8026-8036. doi: 10.1109/TGRS.2019.2917839

     

    Yang Z, Xiao H B. 2018. Stratigraphic parameters response sensibility analysis of azimuthal electromagnetic logging while drilling. Progress in Geophysics (in Chinese), 33(2): 874-879, doi:10.6038/pg2018AA0620.

     

    Zhang G H, Zhang W, Wu Y M, et al. 2017. Inversion methods study of azimuthal EM LWD tool and its applications in horizontal well. Progress in Geophysics (in Chinese), 32(2): 927-938, doi:10.6038/pg20170265.

     

    Zhang Z Y, Gonguet C, Rajani V, et al. 2008. Directional LWD resistivity tools and their business impacts. //78th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts.

     

    Zhong L L, Li J, Bhardwaj A, et al. 2008. Computation of triaxial induction logging tools in layered anisotropic dipping formations. IEEE Transactions on Geoscience and Remote Sensing, 46(4): 1148-1163. doi: 10.1109/TGRS.2008.915749

     

    Zhou J, Li H, Rabinovich M, et al. 2016. Interpretation of azimuthal propagation resistivity measurements: modeling, inversion, application and discussion. //86th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts.

     

    胡松, 郭洪波, 王昌学, 等. 2017. 水平井随钻电阻率与双侧向响应差异影响因素分析. 地球物理学进展, 32(5): 1999-2008, doi: 10.6038/pg20170519.

     

    胡旭飞, 范宜仁, 吴非等. 2018. 随钻方位电磁波测井多参数快速反演. 地球物理学报, 61(11): 4690-4701, doi:10.6038/cjg2018L0746. http://www.geophy.cn//CN/abstract/abstract14772.shtml

     

    杨震, 肖红兵. 2018. 随钻方位电磁波地层参数响应敏感性分析. 地球物理学进展, 33(2): 874-879, doi:10.6038/pg2018AA0620.

     

    张国华, 张伟, 吴意明, 等. 2017. 随钻方位电磁波测井反演方法研究及在水平井中的应用. 地球物理学进展, 32(2): 927-938, doi:10.6038/pg20170265.

  • 加载中

(12)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2020-03-05
修回日期:  2020-11-29
上线日期:  2021-06-10

目录