冀北北岔沟门地区中生代侵入岩地质年代学和地球化学特征研究
Studies on the geochronology and geochemical characteristics of Mesozoic intrusions in Beichagoumen area, northern Hebei province
-
摘要: 北岔沟门地区广泛分布中生代侵入岩体.本文选取了该地区有代表性的8个岩体进行地质年代学和地球化学研究,旨在建立其年代格架并探讨岩石的成因演化.主要岩石类型为闪长玢岩、花岗闪长岩、石英二长岩、二长花岗岩、钾长花岗岩等.颗粒级锆石的U-Pb同位素测年数据表明所研究的岩体主要有三期早三叠世(245~250Ma)、晚侏罗世(140~147Ma)和早白垩世(125~137Ma).地球化学数据表明岩石普遍具有较高的钾含量、准铝质,主要属高钾钙碱性系列,部分为橄榄玄粗岩系列.岩石不同程度地显示轻稀土元素富集、高场强元素(HFSE)和大离子亲石性元素(LILE)解偶等特点.进一步的岩石地球化学研究表明区内侵入岩可划分为高BaSr和低BaSr两种类型,其中高BaSr型具有高Al2O3(≥15%)、Sr(≥400×10-6) 和低Y(≤18×10-6)、Yb(≤1.9×10-6),高的Na2O/K2O(>1), Sr/Y(>20)、La/Yb(≥10)比值;较高的Mg#(38.47~57.78)、具正的或弱的铕负异常等地球化学特征,这些特征与埃达克岩具有某些相似性;而低BaSr型岩石SiO2、K2O、Y、Yb含量相对较高、Al2O3、Sr、Ba含量相对较低、具明显的铕负异常等地球化学特征.尽管两类岩石在时空上密切共生,但可能具有不同的源区和成因机制.综合研究表明本区中生代侵入岩总体形成在加厚地壳的构造背景下,与底侵作用或壳幔相互作用有关.
-
Key words:
- Mesozoic intrusions /
- Northern Hebei province /
- Petrology /
- Geochemistry
-
-
[1] [1]Altherr R, Holl A, Hegner E et al. 2000. High-potassium, calc-alkaline Ⅰ-type plutonism in the European Variscides: northern Vosges(France) and northern Schwarzwald(Germany). Lithos, 50:51~73
[2] [2]Atherton M P & Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362:144~146
[3] [3]Barnes C G, Burton B R, Burling T C, Wright J E, Karlsson H R. 2001. Petrology and geochemistry of the Late Ecocene Harrison Pass pluton, Ruby Mountains core complex, northeastern Nevada. J. Petrology, 42(5):901~929
[4] [4]Bureau of Geology and Mineral Resources of Hebei Province. 1987. Regional geology of Hebei Province. Beijing: Geological Publishing House. 1~741. (in Chinese with English Abstract)
[5] [5]Chen Y Q. 1994. General outline of regional geology of China. Beijing: Geological Publishing House. p429. (in Chinese)
[6] [6]Cocherie A, Rossi Ph, Fouillac A M, Vidal Ph. 1994. Crust and mantle contributions to granite genesis-An example from the Variscan batholith of Corsica, France, studied by trace-element and Nd-Sr-O-isotope systematics. Chemical Geology, 115:173~211
[7] [7]Davis G A, Zheng, Y D, Wang C et al. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China. Geological Society American, memoir 194, 171~197
[8] [8]Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subduction lithosphere. Nature, 347: 662~665
[9] [9]Defant M J, Xu J F, Kepezhinskas P, Wang Q, Zhang Q, Xiao L. 2002. Adakites: some variations on a theme. Acta Petrologica Sinica, 18:129~142
[10] [10]Deng J F, Liu H X, Zhao H L, et al. 1996. Yanshanian igneous rocks and orogeny model in Yanshan-Liaoning area. Geoscience-Journal of graduate school, China University of Geosciences, 10(2): 137~148. (in Chinese with English abstract)
[11] [11]Deng J F, Mo X X, Zhao H L, et al. 1999. The Yanshanian lithosphere-asthenosphere catastrophe and metallogenic environment in east China. Mineral Deposits, 18(4):309~315. (in Chinese with English abstract)
[12] [12]Deng J F, Zhao G C, Zhao H L. 2000. Yanshanian igneous petrotectonic assemblage and orogenic-deep process in east China. Geological Review, 46: 41~48. (in Chinese with English abstract)
[13] [13]Drummond M S and Defant M J. 1990. A model for trondhjemite-tonalite -dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J. Geophys. Res., 95(B13): 21503~21521
[14] [14]Ferr E C, Leake B E. Geodynamic significance of early orogenic high-K crustal and mantle melts: example of the Corsica Batholith. Lithos. 2001. 59: 47-67
[15] [15]Ge X Y, LI X H, Chen Z G & Li W P. 2002. Geochemistry and petrogenesis of Jurassic high Sr/lowY granitoids in eastern China: Constrains on crustal thickness. Chinese Science Bulletin, 47(11): 962~968
[16] [16]Hawkesworth C J, Turner S P, Gallagher K, Hunter A G, Bradshaw T K, Rogers N W. 1995. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range. Journal of Geophysical Research, 100: 10271~10286
[17] [17]Kaszuba J P and Wendlandt R F. 2000. Effect of carbon dioxide on dehydration melting reactions and melt compositions in the lower crust and the origin of alkaline rocks. J. Petrology, 41: 363~386
[18] [18]Kay R W and Kay S M. 2002. Andean adakites: three ways to make them. Acta Petrologica Sinica, 18(3):303~311
[19] [19]Krogh T E. 1973. A low-contamination method for hydrothermal decomposition of Zircon and extraction of U and Pb for isotope age determination. Geochim. Comochim. Acta, 37: 485~494
[20] [20]Liu H T, Sun S H, Liu J M and Zhai M G. 2002. The Mesozoic high-Sr granitioids in the northern marginal region of North China Craton: geochemistry and source region. Acta Petrologica Sinica, 18(3):257-274 (in Chinese with English abstract)
[21] [21]Morris G A & Hooper P R. 1997. Petrogenesis of the Colville Igneous Complex, northeast Washington: implications for Eocene tectonics in the northern U.S. Cordillera. Geology, 25: 831~834
[22] [22]Morris G A, Larson P B, Hooper P R. 2000. Subduction style\' magmatism in a nonsubduction setting: the Colville Igneous complex, NE Washington State, USA. J. Petrology, 2000, 41:43~67
[23] [23]Muir R J, Weaver S D, Bradshaw J D, et al. 1995. Geochemistry of the Cretaceous Separaton Plint Batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere. J. Geol. Soc. London, 152: 689~701
[24] [24]Petford N & Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J. Petrology, 37:1491~1521
[25] [25]Qian Q, Chung S L, Lee T Y and Wen D R. 2002. Geochemical characteristics and petrogenesis of the Badaling high Ba-Sr granitoid:a comparison of igneous rocks from North China and the Dabie-Sulu Orogen. Acta Petrologica Sinca, 18:275~29. (in Chinese with English abstract)
[26] [26]Rapp R P, Watson E B and Miller C F. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalities. Precambrain Research, 51:1~25
[27] [27]Rapp R P, Xiao L, Shimizu N, et al. 2002. Experimental constraints on the origin of potassium-rich adakites in eastern China. Acta Petrologica Sinica, 18(3):293~302
[28] [28]Roberts M P & Clemens J D. 1993. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology, 21(9): 825~828
[29] [29]Sen C & Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 Gpa: implications for the origin of adakites. Contrib. Mineral. Petrol., 117:394~409
[30] [30]Shao J, Liu F T, Chen H, Han Q J. 2001. Relationship between magmatism and subduction in Da Hinggan-Yanshan area. Acta Geologica Sinica, 75(1): 56~63. (in Chinese with English abstract)
[31] [31]Sheppard S, Griffin T J, Tyler I M, Page R W. 2001. High- and low- K granites and adakites at a Palaeoproterozoic plate boundary in northwestern Australia. Journal of the Geological Society, London, 158: 547~560
[32] [32]Stern C R and Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib. Mineral. Petrol., 123: 263~281
[33] [33]Tarney J and Jones C E. 1994. Trace element geochemistry of orogenic igneous rocks and crustal growth models. Journal of the Geological Society, London, 151: 855~868
[34] [34]Zhang Q, Qian Q, Wang E Q et al. 2001. An East China Plateau in mid-late Yanshan period: implication from adakites. Chinese Journal of Geology, 36(2): 248~255.. (in Chinese with English abstract)
[35] [35]Zhang Q, Wang Y, Qian Q et al. 2001. The characteristics and tectonic-metallogenic significances of the adakites in Yanshan period from eastern China. Acta Petrologica Sinica. 17(2): 236~244. (in Chinese with English abstract)
[36] [36]Zhang Q, Zhao T P, Wang Y, Wang Y L. 2001. A discussion on the Yanshanian magmatism in eastern China. Acta Petrologica et Mineralogica, 20(3): 273~280. (in Chinese with English abstract)
[37] [37]Zheng Y D, Davis G A, Wang C, et al. 2000. Major Mesozoic tectonic events in the Yanshan belt and the plate tectonic setting. Acta Geologica Sinica, 74(4): 289~302. (in Chinese with English abstract)
[38] [38]程裕淇主编. 1994. 中国区域地质概论. 北京:地质出版社, 429
[39] [39]Defant M J, 许继峰, Kepezhinskas P, 王强, 张旗, 肖龙. 2002. 埃达克岩: 关于其成因的一些不同观点. 岩石学报, 18(2):129~142
[40] [40]邓晋福, 莫宣学, 赵海玲等. 1999. 中国东部燕山期岩石圈-软流圈系统大灾变与成矿环境. 矿床地质, 18(4): 309~315
[41] [41]邓晋福, 赵国春, 赵海玲等. 2000. 中国东部燕山期火成岩构造组合与造山-深部过程. 地质论评, 46(1): 41~48
[42] [42]邓晋福,刘厚祥,赵海玲等. 1996. 燕山地区燕山期火成岩与造山模型. 现代地质,10:137~148
[43] [43]葛小月,李献华,陈志刚. 李伍平. 2002. 中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因: 对中国东部地壳厚度的制约.科学通报,47(6):474~480
[44] [44]河北省地质矿产局. 1989. 河北省北京市天津市区域地质志. 北京:地质出版社, 393~453
[45] [45]Kay R W and Kay S M. 2002. 安第斯埃达克岩:三种成因模式. 岩石学报, 18(3):303~311
[46] [46]刘红涛孙世华,刘建明,翟明国. 2002. 华北克拉通北缘中生代高锶花岗岩类:地球化学与源区性质. 岩石学报,18(3):257-274
[47] [47]钱青,钟孙霖,李通艺,温大任. 2002. 八达岭基性岩和高Ba-Sr 花岗岩地球化学特点及成因探讨:华北和大别-苏鲁造山带中生代岩浆岩的对比. 岩石学报,18:275~292
[48] [48]Rapp R P, 肖龙, Shimizu N. 2002. 中国东部富钾埃达克岩成因的实验约束. 岩石学报, 18(3):293~302
[49] [49]邵济安, 刘福田, 陈辉, 韩庆军. 2001. 大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系. 地质学报, 75(1): 56~63
[50] 张旗, 王焰, 钱青,等. 2001a. 中国东部中生代埃达克岩的特征及其构造-成矿意义. 岩石学报, 17(2): 236-244
[51] [51]张旗, 钱青, 王二七, 等. 2001b. 燕山中晚期的"中国东部高原": 埃达克岩的启示. 地质科学, 36(2): 248~255
[52] [52]张旗, 赵太平, 王焰, 王元龙. 2001c. 中国东部燕山期岩浆活动的几个问题. 岩石矿物学杂志, 20(3): 273~280
[53] 郑亚东, Davies G A, 王琮, 等. 2000. 燕山带中生代主要构造时间与板块构造背景问题. 地质学报, 74(4): 289-302.
-
计量
- 文章访问数:
- PDF下载数:
- 施引文献: 0