冀北北岔沟门地区中生代侵入岩地质年代学和地球化学特征研究

毛德宝 陈志宏 钟长汀 左义成 石森 胡小蝶. 冀北北岔沟门地区中生代侵入岩地质年代学和地球化学特征研究[J]. 岩石学报, 2003, 19(4): 661-674.
引用本文: 毛德宝 陈志宏 钟长汀 左义成 石森 胡小蝶. 冀北北岔沟门地区中生代侵入岩地质年代学和地球化学特征研究[J]. 岩石学报, 2003, 19(4): 661-674.
MAO DeBao,CHEN ZhiHong,ZHONG ChangTing,ZUO YiCheng,SHI Sen and HU XiaoDie Tianjin Institute of Geology and Mineral Resources,Tianjin 300170,China China University of Geosciences,Beijing 100083,China China Geological Survey,Beijing 1000035,China. Studies on the geochronology and geochemical characteristics of Mesozoic intrusions in Beichagoumen area, northern Hebei province[J]. Acta Petrologica Sinica, 2003, 19(4): 661-674.
Citation: MAO DeBao,CHEN ZhiHong,ZHONG ChangTing,ZUO YiCheng,SHI Sen and HU XiaoDie Tianjin Institute of Geology and Mineral Resources,Tianjin 300170,China China University of Geosciences,Beijing 100083,China China Geological Survey,Beijing 1000035,China. Studies on the geochronology and geochemical characteristics of Mesozoic intrusions in Beichagoumen area, northern Hebei province[J]. Acta Petrologica Sinica, 2003, 19(4): 661-674.

冀北北岔沟门地区中生代侵入岩地质年代学和地球化学特征研究

  • 基金项目:

    国土资源部"九五"资源与环境科技攻关项目(950200302)资助

Studies on the geochronology and geochemical characteristics of Mesozoic intrusions in Beichagoumen area, northern Hebei province

  • 北岔沟门地区广泛分布中生代侵入岩体.本文选取了该地区有代表性的8个岩体进行地质年代学和地球化学研究,旨在建立其年代格架并探讨岩石的成因演化.主要岩石类型为闪长玢岩、花岗闪长岩、石英二长岩、二长花岗岩、钾长花岗岩等.颗粒级锆石的U-Pb同位素测年数据表明所研究的岩体主要有三期早三叠世(245~250Ma)、晚侏罗世(140~147Ma)和早白垩世(125~137Ma).地球化学数据表明岩石普遍具有较高的钾含量、准铝质,主要属高钾钙碱性系列,部分为橄榄玄粗岩系列.岩石不同程度地显示轻稀土元素富集、高场强元素(HFSE)和大离子亲石性元素(LILE)解偶等特点.进一步的岩石地球化学研究表明区内侵入岩可划分为高BaSr和低BaSr两种类型,其中高BaSr型具有高Al2O3(≥15%)、Sr(≥400×10-6) 和低Y(≤18×10-6)、Yb(≤1.9×10-6),高的Na2O/K2O(>1), Sr/Y(>20)、La/Yb(≥10)比值;较高的Mg#(38.47~57.78)、具正的或弱的铕负异常等地球化学特征,这些特征与埃达克岩具有某些相似性;而低BaSr型岩石SiO2、K2O、Y、Yb含量相对较高、Al2O3、Sr、Ba含量相对较低、具明显的铕负异常等地球化学特征.尽管两类岩石在时空上密切共生,但可能具有不同的源区和成因机制.综合研究表明本区中生代侵入岩总体形成在加厚地壳的构造背景下,与底侵作用或壳幔相互作用有关.
  • 加载中
  • [1]

    [1]Altherr R, Holl A, Hegner E et al. 2000. High-potassium, calc-alkaline Ⅰ-type plutonism in the European Variscides: northern Vosges(France) and northern Schwarzwald(Germany). Lithos, 50:51~73

    [2]

    [2]Atherton M P & Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362:144~146

    [3]

    [3]Barnes C G, Burton B R, Burling T C, Wright J E, Karlsson H R. 2001. Petrology and geochemistry of the Late Ecocene Harrison Pass pluton, Ruby Mountains core complex, northeastern Nevada. J. Petrology, 42(5):901~929

    [4]

    [4]Bureau of Geology and Mineral Resources of Hebei Province. 1987. Regional geology of Hebei Province. Beijing: Geological Publishing House. 1~741. (in Chinese with English Abstract)

    [5]

    [5]Chen Y Q. 1994. General outline of regional geology of China. Beijing: Geological Publishing House. p429. (in Chinese)

    [6]

    [6]Cocherie A, Rossi Ph, Fouillac A M, Vidal Ph. 1994. Crust and mantle contributions to granite genesis-An example from the Variscan batholith of Corsica, France, studied by trace-element and Nd-Sr-O-isotope systematics. Chemical Geology, 115:173~211

    [7]

    [7]Davis G A, Zheng, Y D, Wang C et al. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China. Geological Society American, memoir 194, 171~197

    [8]

    [8]Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subduction lithosphere. Nature, 347: 662~665

    [9]

    [9]Defant M J, Xu J F, Kepezhinskas P, Wang Q, Zhang Q, Xiao L. 2002. Adakites: some variations on a theme. Acta Petrologica Sinica, 18:129~142

    [10]

    [10]Deng J F, Liu H X, Zhao H L, et al. 1996. Yanshanian igneous rocks and orogeny model in Yanshan-Liaoning area. Geoscience-Journal of graduate school, China University of Geosciences, 10(2): 137~148. (in Chinese with English abstract)

    [11]

    [11]Deng J F, Mo X X, Zhao H L, et al. 1999. The Yanshanian lithosphere-asthenosphere catastrophe and metallogenic environment in east China. Mineral Deposits, 18(4):309~315. (in Chinese with English abstract)

    [12]

    [12]Deng J F, Zhao G C, Zhao H L. 2000. Yanshanian igneous petrotectonic assemblage and orogenic-deep process in east China. Geological Review, 46: 41~48. (in Chinese with English abstract)

    [13]

    [13]Drummond M S and Defant M J. 1990. A model for trondhjemite-tonalite -dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J. Geophys. Res., 95(B13): 21503~21521

    [14]

    [14]Ferr E C, Leake B E. Geodynamic significance of early orogenic high-K crustal and mantle melts: example of the Corsica Batholith. Lithos. 2001. 59: 47-67

    [15]

    [15]Ge X Y, LI X H, Chen Z G & Li W P. 2002. Geochemistry and petrogenesis of Jurassic high Sr/lowY granitoids in eastern China: Constrains on crustal thickness. Chinese Science Bulletin, 47(11): 962~968

    [16]

    [16]Hawkesworth C J, Turner S P, Gallagher K, Hunter A G, Bradshaw T K, Rogers N W. 1995. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range. Journal of Geophysical Research, 100: 10271~10286

    [17]

    [17]Kaszuba J P and Wendlandt R F. 2000. Effect of carbon dioxide on dehydration melting reactions and melt compositions in the lower crust and the origin of alkaline rocks. J. Petrology, 41: 363~386

    [18]

    [18]Kay R W and Kay S M. 2002. Andean adakites: three ways to make them. Acta Petrologica Sinica, 18(3):303~311

    [19]

    [19]Krogh T E. 1973. A low-contamination method for hydrothermal decomposition of Zircon and extraction of U and Pb for isotope age determination. Geochim. Comochim. Acta, 37: 485~494

    [20]

    [20]Liu H T, Sun S H, Liu J M and Zhai M G. 2002. The Mesozoic high-Sr granitioids in the northern marginal region of North China Craton: geochemistry and source region. Acta Petrologica Sinica, 18(3):257-274 (in Chinese with English abstract)

    [21]

    [21]Morris G A & Hooper P R. 1997. Petrogenesis of the Colville Igneous Complex, northeast Washington: implications for Eocene tectonics in the northern U.S. Cordillera. Geology, 25: 831~834

    [22]

    [22]Morris G A, Larson P B, Hooper P R. 2000. Subduction style\' magmatism in a nonsubduction setting: the Colville Igneous complex, NE Washington State, USA. J. Petrology, 2000, 41:43~67

    [23]

    [23]Muir R J, Weaver S D, Bradshaw J D, et al. 1995. Geochemistry of the Cretaceous Separaton Plint Batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere. J. Geol. Soc. London, 152: 689~701

    [24]

    [24]Petford N & Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J. Petrology, 37:1491~1521

    [25]

    [25]Qian Q, Chung S L, Lee T Y and Wen D R. 2002. Geochemical characteristics and petrogenesis of the Badaling high Ba-Sr granitoid:a comparison of igneous rocks from North China and the Dabie-Sulu Orogen. Acta Petrologica Sinca, 18:275~29. (in Chinese with English abstract)

    [26]

    [26]Rapp R P, Watson E B and Miller C F. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalities. Precambrain Research, 51:1~25

    [27]

    [27]Rapp R P, Xiao L, Shimizu N, et al. 2002. Experimental constraints on the origin of potassium-rich adakites in eastern China. Acta Petrologica Sinica, 18(3):293~302

    [28]

    [28]Roberts M P & Clemens J D. 1993. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology, 21(9): 825~828

    [29]

    [29]Sen C & Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 Gpa: implications for the origin of adakites. Contrib. Mineral. Petrol., 117:394~409

    [30]

    [30]Shao J, Liu F T, Chen H, Han Q J. 2001. Relationship between magmatism and subduction in Da Hinggan-Yanshan area. Acta Geologica Sinica, 75(1): 56~63. (in Chinese with English abstract)

    [31]

    [31]Sheppard S, Griffin T J, Tyler I M, Page R W. 2001. High- and low- K granites and adakites at a Palaeoproterozoic plate boundary in northwestern Australia. Journal of the Geological Society, London, 158: 547~560

    [32]

    [32]Stern C R and Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib. Mineral. Petrol., 123: 263~281

    [33]

    [33]Tarney J and Jones C E. 1994. Trace element geochemistry of orogenic igneous rocks and crustal growth models. Journal of the Geological Society, London, 151: 855~868

    [34]

    [34]Zhang Q, Qian Q, Wang E Q et al. 2001. An East China Plateau in mid-late Yanshan period: implication from adakites. Chinese Journal of Geology, 36(2): 248~255.. (in Chinese with English abstract)

    [35]

    [35]Zhang Q, Wang Y, Qian Q et al. 2001. The characteristics and tectonic-metallogenic significances of the adakites in Yanshan period from eastern China. Acta Petrologica Sinica. 17(2): 236~244. (in Chinese with English abstract)

    [36]

    [36]Zhang Q, Zhao T P, Wang Y, Wang Y L. 2001. A discussion on the Yanshanian magmatism in eastern China. Acta Petrologica et Mineralogica, 20(3): 273~280. (in Chinese with English abstract)

    [37]

    [37]Zheng Y D, Davis G A, Wang C, et al. 2000. Major Mesozoic tectonic events in the Yanshan belt and the plate tectonic setting. Acta Geologica Sinica, 74(4): 289~302. (in Chinese with English abstract)

    [38]

    [38]程裕淇主编. 1994. 中国区域地质概论. 北京:地质出版社, 429

    [39]

    [39]Defant M J, 许继峰, Kepezhinskas P, 王强, 张旗, 肖龙. 2002. 埃达克岩: 关于其成因的一些不同观点. 岩石学报, 18(2):129~142

    [40]

    [40]邓晋福, 莫宣学, 赵海玲等. 1999. 中国东部燕山期岩石圈-软流圈系统大灾变与成矿环境. 矿床地质, 18(4): 309~315

    [41]

    [41]邓晋福, 赵国春, 赵海玲等. 2000. 中国东部燕山期火成岩构造组合与造山-深部过程. 地质论评, 46(1): 41~48

    [42]

    [42]邓晋福,刘厚祥,赵海玲等. 1996. 燕山地区燕山期火成岩与造山模型. 现代地质,10:137~148

    [43]

    [43]葛小月,李献华,陈志刚. 李伍平. 2002. 中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因: 对中国东部地壳厚度的制约.科学通报,47(6):474~480

    [44]

    [44]河北省地质矿产局. 1989. 河北省北京市天津市区域地质志. 北京:地质出版社, 393~453

    [45]

    [45]Kay R W and Kay S M. 2002. 安第斯埃达克岩:三种成因模式. 岩石学报, 18(3):303~311

    [46]

    [46]刘红涛孙世华,刘建明,翟明国. 2002. 华北克拉通北缘中生代高锶花岗岩类:地球化学与源区性质. 岩石学报,18(3):257-274

    [47]

    [47]钱青,钟孙霖,李通艺,温大任. 2002. 八达岭基性岩和高Ba-Sr 花岗岩地球化学特点及成因探讨:华北和大别-苏鲁造山带中生代岩浆岩的对比. 岩石学报,18:275~292

    [48]

    [48]Rapp R P, 肖龙, Shimizu N. 2002. 中国东部富钾埃达克岩成因的实验约束. 岩石学报, 18(3):293~302

    [49]

    [49]邵济安, 刘福田, 陈辉, 韩庆军. 2001. 大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系. 地质学报, 75(1): 56~63

    [50]

    张旗, 王焰, 钱青,等. 2001a. 中国东部中生代埃达克岩的特征及其构造-成矿意义. 岩石学报, 17(2): 236-244

    [51]

    [51]张旗, 钱青, 王二七, 等. 2001b. 燕山中晚期的"中国东部高原": 埃达克岩的启示. 地质科学, 36(2): 248~255

    [52]

    [52]张旗, 赵太平, 王焰, 王元龙. 2001c. 中国东部燕山期岩浆活动的几个问题. 岩石矿物学杂志, 20(3): 273~280

    [53]

    郑亚东, Davies G A, 王琮, 等. 2000. 燕山带中生代主要构造时间与板块构造背景问题. 地质学报, 74(4): 289-302.

  • 加载中
计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
修回日期:  2003-05-29
刊出日期:  2003-11-30

目录