泥石流堆积物粒度分布特征影响因素分析及分形维数预测

董佳祺, 王清, 张旭东, 陈剑平, 单博, 肖广平

董佳祺, 王清, 张旭东, 陈剑平, 单博, 肖广平. 2015: 泥石流堆积物粒度分布特征影响因素分析及分形维数预测. 工程地质学报, 23(3): 462-468. DOI: 10.13544/j.cnki.jeg.2015.03.013
引用本文: 董佳祺, 王清, 张旭东, 陈剑平, 单博, 肖广平. 2015: 泥石流堆积物粒度分布特征影响因素分析及分形维数预测. 工程地质学报, 23(3): 462-468. DOI: 10.13544/j.cnki.jeg.2015.03.013
DONG Jiaqi, WANG Qing, ZHANG Xudong, CHEN Jianping, SHAN Bo, XIAO Guangping. 2015: INFLUENCING FACTORS ANALYZING OF GRAIN SIZE DISTRIBUTION CHARACTERISTICS OF DEBRIS FLOW DEPOSITION AND FRACTAL DIMENSION PREDICTION. JOURNAL OF ENGINEERING GEOLOGY, 23(3): 462-468. DOI: 10.13544/j.cnki.jeg.2015.03.013
Citation: DONG Jiaqi, WANG Qing, ZHANG Xudong, CHEN Jianping, SHAN Bo, XIAO Guangping. 2015: INFLUENCING FACTORS ANALYZING OF GRAIN SIZE DISTRIBUTION CHARACTERISTICS OF DEBRIS FLOW DEPOSITION AND FRACTAL DIMENSION PREDICTION. JOURNAL OF ENGINEERING GEOLOGY, 23(3): 462-468. DOI: 10.13544/j.cnki.jeg.2015.03.013

泥石流堆积物粒度分布特征影响因素分析及分形维数预测

基金项目: 

国家自然科学基金(41330636), 水利部公益性行业科研专项经费项目(201001008)资助.

详细信息
    作者简介:

    董佳祺(1990-),女,硕士生,主要从事岩土工程方面研究.Email:dongjq91@163.com

    通讯作者:

    陈剑平(1957-),男,教授,博士生导师,主要从事环境岩土工程方面研究.Email:chenjp@jlu.edu.cn

  • 中图分类号: TU443

INFLUENCING FACTORS ANALYZING OF GRAIN SIZE DISTRIBUTION CHARACTERISTICS OF DEBRIS FLOW DEPOSITION AND FRACTAL DIMENSION PREDICTION

  • 摘要: 泥石流堆积物作为泥石流发育最终的产物,含有大量与泥石流发生过程和发育特征相关的信息,能够反映泥石流灾害程度和活动强度。研究表明,泥石流堆积物颗粒具有明显的自相似性和无标度区间,运用分形理论,计算泥石流堆积物颗粒分布的分维数。分析分维数与主沟长度、泥砂补给段长度比、主沟平均比降、流域最大相对高差和松散物源量的关系,结果表明分维数与各因素之间存在较强的非线性响应关系。以乌东德库区泥石流实测数据为例,以上述的5个因素作为输入单元,建立了泥石流堆积物分维数支持向量机预测模型,并对分维数进行了预测,其预测结果的最大误差为1.25%,说明预测值与实测值吻合度较高。综合表明支持向量机预测模型能够较好地模拟和泛化数据,是一种行之有效的泥石流堆积物分形维数预测方法,可用于不具备筛析条件的泥石流堆积物粒度分布特征的预测与研究,进而可为研究泥石流的形成机理、类型、危险度和堆积物的形成演化特征及物理力学性质提供一个新思路。
    Abstract: The debris flow deposition is the final product of debris flow. It contains a lot of information of transit process and development of debris flows. The research of deposition has reflected the debris flow hazard and activity intensity. Consequently, solid grains in the debris-flow deposits display a marked self-similarity in geometrical shape and scale-invariance in size according to fractal theory. The particle fractal dimension of debris flow deposition is calculated with fractal theory. By analyzing the relationship between fractal dimension and the length of the main channel, the ratio of loose material length along the channel to the total channel length, average gradient of the main channel, and maximum elevation difference, this paper finds the nonlinear response between fractal dimension and its influencing factors. According to fractal dimension data of debris flow in the Wudongde reservoir area, taking the aforementioned influencing factors as the input units, the support vector machine forecasting model is established. The fractal dimension of debris flow deposits is predicted. The maximum error is only 1.25%,which means the predicted values are consistent with the measured values. It is indicated that the support vector machine model has a great fitting and generalization ability. It is an effective method for prediction of debris flow deposits fractal dimension, which can also be used to deduce the distribution law of particle for debris flows without sample sieve analysis. Besides it provides a new idea for researching the following subjects: formation mechanism, type, hazard of debris flow and formation characteristic, physical and mechanical properties of debris flow deposits.
  • Garpinteri A,Lacidogna G,Pugno N. 2004. Scaling of energy dissipation in crushing and fragmentation a fractal and statistical analysis based on particle size distribution[J]. International Journal of Fracture, 129 (2): 131~139.

    Huang R,Chen J P,Li H Z, et al. 2011. Dynamic characteristics of debris flow based on the granularmetric analysis of the value of φ[J]. Journal of Jilin University(Earth Science Edition), 41 (1): 182~187.

    Institute of Mountain Hazards and Environment, CAS. 1989. Research and prevention of debris flow[M]. Chengdu: Sichuan Publishing House of Science & Technology.

    Kulatilake P H S W. 1986. Bivariate normal distribution fitting on discontinuity orientation clusters[J]. Mathematical Geology, 18 (2): 181~195.

    Liu G N,Cui Z J,Wang X H. 1995. Sedimentary macrostructures of debris flows and their formation mechanism[J]. Geological Review, 41 (2): 159~164.

    Mandelbrot B B. 1982. The fractal geometry of nature[M]. W H Freeman and Company.

    Miller S M. 1983. A statistical method to evaluate homogeneity of structural populations[J]. Journal of the Internationcl Associatiou for Mathematical Geology, 15 (2): 317~328.

    Ni H Y,Li X L. 2008. Grain-size distribution and fractal structures of solid grains in debris-flow deposits[J]. Sedimentary Geology and Tethyan Geology, 28 (3): 35~40.

    Peng L,Niu R Q,Ye R Q. 2012. Prediction of ground water level in landslides based on genetic-support vector machine[J]. Journal of Central South University(Science and Technology), 43 (12): 4788~4795.

    Sohn Y K. 2000. Coarse-grained debris-flow deposits in the Miocenefan deltas, SE Korea: a scaling analysis[J]. Sedimentary Geology, 130 (1): 45~64.

    Su Y Z,Zhao H L,Zhao W Z, et al. 2003. Fractal features of soil particle size distribution and the implication for indicating desertification[J]. Geoderma, 122 (1): 43~49.

    Yang J Y,Zhang Y Y,Zhu Y S. 2007. Classification performance of support vector machine with ε-Insensitive Loss Function[J]. Journal of Xi'an Jiaotong University, 41 (11): 1315~1320.

    Yang W,Cui P,Zhuang J Q, et al. 2012. Particle-size's fractal characteristics of debris-flow deposits and associated influencing factors[J]. Bulletin of Soil and Water Conservation, 32 (2): 80~83.

    Yang Z C. 2003. Analysis on accumulation state of debris flow[J]. Chinese Journal of Rock Mechanics and Engineering, 22 (S2): 2778~2782.

    Yi S M. 1994. The fractal structure features of accumulation in debris-flow[J]. Journal of Natural Disasters, 3 (2): 91~96.

    Yuen Y S,Fong C K,Chan K L. 2004. Fractal dimension estimation and noise filtering using Hough transforms[J]. Signal Processing, 84 (5): 907~917.

    Zhang C,Chen J P,Wang Q, et al. 2010. Study of activity intensity of debris flow based on three-dimensional drainage system model and fractal theory[J]. Chinese Journal of Rock Mechanics and Engineering, 29 (6): 1214~1221.

    黄芮,陈剑平,李会中,等. 2011. 基于φ值粒度成分分析的泥石流动力特性[J]. 吉林大学学报(地球科学版), 41 (1): 182~187.

    刘耕年,崔之久,王晓晖. 1995. 泥石流的宏观沉积构造与形成机理[J]. 地质论评, 41 (2): 159~164.

    倪华勇,刘希林. 2008. 泥石流堆积物的粒度分布及其分形结构[J]. 沉积与特提斯地质, 28 (3): 35~40.

    彭令,牛瑞卿,叶润清,等. 2012. 基于进化支持向量机的滑坡地下水位动态预测[J]. 中南大学学报(自然科学版), 43 (12): 4788~4795.

    杨俊燕,张优云,朱永生. 2007. ε不敏感损失函数支持向量机分类性能研究[J]. 西安交通大学学报, 41 (11): 1315~1320.

    杨伟,崔鹏,庄建琦,等. 2012. 泥石流堆积物粒度分形特征及影响因素分析[J]. 水土保持通报, 32 (2): 80~83.

    杨重存. 2003. 泥石流堆积形态分析[J]. 岩石力学与工程学报, 22 (增2): 2778~2782.

    易顺民. 1994. 泥石流堆积物的分形结构特征[J]. 自然灾害学报, 3 (2): 91~96.

    张晨,陈剑平,王清,等. 2010. 基于水系三维模型及分形理论对泥石流活动强度的研究[J]. 岩石力学与工程学报, 29 (6): 1214~1221.

    中国科学院成都山地灾害与环境研究所. 1989. 泥石流研究与防治[M]. 成都:四川科学技术出版社.
  • 期刊类型引用(6)

    1. 崔开林,范玮佳,向灵芝,沈娜,梁梦辉,李小龙,罗亮. 白龙江流域武都区段新发泥石流堆积物基本特征及颗粒级配分维研究. 防灾减灾工程学报. 2022(04): 674-682 . 百度学术
    2. 余杰,李浦,胡凯衡,李华东. 泥石流阵流的物质组成、流量过程与形态特征. 人民黄河. 2021(01): 109-114+124 . 百度学术
    3. 韦遥,文海涛,廖丽萍,韦文智,吴善百,赵瑞华. 桂东南容县花岗岩残积土粒度组成与力学性质的变异性. 广西大学学报(自然科学版). 2021(05): 1157-1165 . 百度学术
    4. 廖丽萍,文海涛,赵艳林,杨云川,陈立华. 桂东南容县花岗岩残积土粒度分形与物理参数的关系. 山地学报. 2019(02): 222-229 . 百度学术
    5. 李丽敏,程少康,温宗周,萧明伟,徐根祺,张顺锋. 基于改进KPCA与混合核函数LSSVR的泥石流预测. 信息与控制. 2019(05): 536-544 . 百度学术
    6. 王猛,王宁,王军,余天彬,江煜,黄细超. 不同岩性区泥石流堆积物颗粒组成特征——以新疆塔什库尔干河中上游为例. 四川地质学报. 2018(04): 680-684 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  2803
  • HTML全文浏览量:  211
  • PDF下载量:  520
  • 被引次数: 13
出版历程
  • 收稿日期:  2014-07-26
  • 修回日期:  2015-04-20
  • 刊出日期:  2015-06-24

目录

    /

    返回文章
    返回