首页 | 本学科首页   官方微博 | 高级检索  
     


Subsidence and thermal history of an inverted Late Jurassic‐Early Cretaceous extensional basin (Cameros,North‐central Spain) affected by very low‐ to low‐grade metamorphism
Authors:Silvia Omodeo‐Salé  Ramon Salas  Joan Guimerà  Robert Ondrak  Ramon Mas  José Arribas  Isabel Suárez‐Ruiz  Luis Martinez
Affiliation:1. Departamento de Petrología y Geoquímica, UCM, IGEO (UCM‐CSIC), Madrid, Spain;2. Departament de Geoquímica, Petrologia i Prospecció Geològica, Universitat de Barcelona, Barcelona, Spain;3. Departament de Geodinàmica i Geofísica, Universitat de Barcelona, Barcelona, Spain;4. Organic Geochemistry, GFZ, German Research Centre for Geosciences, Potsdam, Germany;5. Departamento de Estratigrafía, UCM, IGEO (UCM‐CSIC), Madrid, Spain;6. Instituto Nacional del Carbón, INCAR‐CSIC, Oviedo, Spain;7. EOST, Université de Strasbourg, Nancy, France
Abstract:The Cameros Basin (North Spain) is a Late Jurassic‐Early Cretaceous extensional basin, which was inverted during the Cenozoic. It underwent a remarkable thermal evolution, as indicated by the record of anomalous high temperatures in its deposits. In this study, the subsidence and thermal history of the basin is reconstructed, using subsidence analysis and 2D thermal modelling. Tectonic subsidence curves provide evidence of the occurrence of two rapid subsidence phases during the syn‐extensional stage. In the first phase (Tithonian‐Early Berriasian), the largest accommodation space was formed in the central sector of the basin, whereas in the second (Early Barremian‐Early Albian), it was formed in the northern sector. These rapid subsidence phases could correspond to relevant tectonic events affecting the Iberian Plate at that time. By distinguishing between the initial and thermal subsidence and defining their relative magnitudes, Royden's (1986) method was used to estimate the heat flow at the end of the extensional stage. A maximum heat flow of 60–65 mW/m2 is estimated, implying only a minor thermal disturbance associated with extension. In contrast with these data, very high vitrinite reflectance, anomalously distributed in some case with respect to the typical depth‐vitrinite reflectance relation, was measured in the central‐northern sector of the basin. Burial and thermal data are used to construct a 2D thermal basin model, to elucidate the role of the processes involved in sediment heating. Calibration of the thermal model with the vitrinite reflectance (%Ro) and fluid inclusion (FI) data indicates that in the central and northern sectors of the basin, an extra heat source, other than a typical rift, is required to explain the observed thermal anomalies. The distribution of the %Ro and FI values in these sectors suggests that the high temperatures and their distribution are related to the circulation of hot fluids. Hot fluids were attributed to the hydrothermal metamorphic events affecting the area during the early post‐extensional and inversion stages of the basin.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号