首页 | 本学科首页   官方微博 | 高级检索  
     

基于有限体积法的二维大地电磁各向异性数值模拟
引用本文:王宁, 汤井田, 任政勇, 肖晓, 皇祥宇. 2019. 基于有限体积法的二维大地电磁各向异性数值模拟. 地球物理学报, 62(10): 3912-3922, doi: 10.6038/cjg2019M0498
作者姓名:王宁  汤井田  任政勇  肖晓  皇祥宇
作者单位:1. 中南大学地球科学与信息物理学院, 长沙 410083; 2. 安徽省地质调查院(安徽省地质科学研究所), 合肥 230001; 3. 有色金属成矿预测与地质环境监测教育部重点实验室, 长沙 410083
基金项目:国家高技术研究发展计划(2014AA06A602),国家自然科学基金(41574120),国家重点基础研究发展计划(973计划)青年科学家专题(青年973)(2015CB060200),中南大学创新驱动计划(2016CX005)联合资助.
摘    要:

为了计算带任意地形的各向异性介质中二维大地电磁响应,本文在非结构化网格的基础上,采用有限体积法,开发了二维大地电磁各向异性正演模拟的新算法.首先,从Maxwell方程出发,推导二维各向异性介质中大地电磁场的边值问题;然后,采用三角网格自动生成技术对求解区域进行非结构化网格剖分,进而构建节点中心控制体积单元,利用有限体积方法,得到求解边值问题的大型稀疏线性方程组;最后,利用Pardiso精确地计算了大地电磁响应值.三个各向异性模型的计算结果表明,本文开发的有限体积算法,不仅能够高精度求解带任意地形的大地电磁电导率各向异性问题,而且对于同一模型,该方法的计算消耗和精度都与有限单元法相当.因此,有限体积法是处理电磁法各向异性问题的一种有效方法.



关 键 词:大地电磁   有限体积法   电导率各向异性   非结构化网格
收稿时间:2018-08-13
修稿时间:2019-03-05

Two-dimensional magnetotelluric anisotropic forward modeling using finite-volume method
WANG Ning, TANG JingTian, REN ZhengYong, XIAO Xiao, HUANG XiangYu. 2019. Two-dimensional magnetotelluric anisotropic forward modeling using finite-volume method. Chinese Journal of Geophysics (in Chinese), 62(10): 3912-3922, doi: 10.6038/cjg2019M0498
Authors:WANG Ning  TANG JingTian  REN ZhengYong  XIAO Xiao  HUANG XiangYu
Affiliation:1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China; 2. Geological Survey of Anhui Province(Anhui Institute of Geological Sciences), Hefei 230001, China; 3. Key Laboratory of Metallogenic Prediction of Non-ferrous Metals and Geological Environment Monitoring, Ministry of Education, Changsha 410083, China
Abstract:In order to calculate the two-dimensional magnetotelluric response in anisotropic media with arbitrary topography,we develop a finite-volume approach for this problem. Firstly, based on the energy compensation principle and divergence theorem, the energy compensation equations for two-dimensional magnetotelluric problem with anisotropic conductivity structures are derived from Maxwell's equations. Then, a triangular grid is used to discretize the two-dimensional conductivity model so that arbitrarily complex cases with topography can be greatly dealt with. The node-centered finite-volume algorithm is used to derive the final system of linear equations. PARDISO, a high-performance parallel solver, is chosen to achieve accurate electrical field and magnetic field efficiently. Finally, three models with anisotropic conductivity structures are used to test our proposed approach. The results show that not only can finite-volume method be used to accurately solve magnetotelluric anisotropic problems, but it also can be used to model the complex cases with arbitrarily surface topography by using unstructured grids.
Keywords:Magnetotelluric  Finite-volume method  Anisotropic conductivity  Unstructured grids  
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号