首页 | 本学科首页   官方微博 | 高级检索  
     

深度学习油气藏地质建模研究进展
引用本文:刘彦锋,张文彪,段太忠,廉培庆,李蒙,赵华伟. 深度学习油气藏地质建模研究进展[J]. 地质科技通报, 2021, 40(4): 235-241. DOI: 10.19509/j.cnki.dzkq.2021.0417
作者姓名:刘彦锋  张文彪  段太忠  廉培庆  李蒙  赵华伟
基金项目:中科院先导A类项目XDA14010204中国石化基础前瞻项目JC-2020-XX002
摘    要:随着大数据和以深度学习为基础的人工智能技术的快速发展,油气藏地质建模逐步从传统的两点地质统计建模、基于目标建模、多点地质统计建模和基于沉积过程建模进入智能地质建模阶段。以深度学习为基础的智能地质建模主要采用对抗生成网络建立三维地质模型,目前这些研究集中在网络结构和算法的完善,特别是对地震和测井等各类数据的条件化,少量研究侧重于样本数据的获取。目前研究中采用的训练样本大多是基于目标或基于沉积过程方法模拟得到的合成数据,为了真正将该技术应用实际地下油气藏,需要更加关注真实样本数据的获取。仅靠深度神经网络这种统计学习方法实现技术突破的难度较大,研发通用的人工智能地质建模器是未来的主要发展方向,其中统计学习与符号学习相结合可能是实现该技术的必经道路。 

关 键 词:智能地质建模   深度学习地质建模   条件对抗生成网络   人工智能
收稿时间:2020-10-22

Progress of deep learning in oil and gas reservoir geological modeling
Abstract:With the rapid development of big data and deep learning based on artificial intelligence technology, reservoir geological modeling has gradually moved from traditional two-point geostatistical modeling, object-based modeling, multi-point geostatistical modeling, and sedimentary process-based modeling to intelligent geological modeling stage.Intelligent geological modeling based on deep learning mainly uses adversarial generation networks to build a 3D geological model.At present, these studies focus on the improvement of network architectures and algorithms, especially the conditioning of various types of observed data such as seismic and well logging.Few studies focus on sample data obtaining.At present, most of the training samples used in the research are synthetic data based on object modeling or sedimentary process methods.To truly apply this technology to actual underground oil and gas reservoirs, more attention needs to be paid on the acquisition of real sample data.We believe a general artificial intelligence geological modeler is the main direction in the future.However, it is difficult to achieve technological breakthroughs only by the statistical learning method of deep neural networks.The combination of statistical learning and symbol learning may be the only way to realize this technology. 
Keywords:
点击此处可从《地质科技通报》浏览原始摘要信息
点击此处可从《地质科技通报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号