
黄河流域煤炭富集区煤炭水足迹演变及驱动效应研究
Evolution and Driving Effect of Coal-Water Footprint in Coal Rich Areas of the Yellow River Basin
煤炭与水资源相互影响和制约,如何评价煤炭耗水的演变趋势及其影响机制对煤炭和水资源进行协同管理具有重要意义。基于国际标准的煤炭水足迹测算模型,分析2000—2017年黄河流域煤炭富集区——晋陕蒙煤炭水足迹的时空演变趋势,构建煤炭水足迹压力指数评价区域煤炭和水资源的匹配关系,并运用LMDI模型定量分析煤炭水足迹的驱动效应。结论如下:① 煤炭水足迹总量在研究期内呈增长趋势,主要以原煤和火力发电水足迹为主,山西和内蒙古煤炭水足迹最高,陕西最低。② 研究区整体煤炭水足迹压力指数逐渐增大,由煤–水关系缓和型逐渐演变为煤–水关系制约型,从空间分异来看,山西最大,研究期内均属于煤–水紧张型,陕西次之,内蒙古最小,均由煤–水关系缓和型演变为煤–水关系制约型。③ 影响煤炭水足迹的主要驱动因素是经济效应和技术效应,前者对煤炭水足迹的影响逐渐增强,后者对煤炭水足迹压力的影响先增强后减弱,各驱动效应空间分异明显。研究结果可为煤炭富集区煤炭和水资源可持续利用提供决策参考,为黄河流域生态保护和高质量发展的资源管理提供决策支持。
Coal and water resources are important strategic natural resources in China. How to evaluate the evolution of coal and water consumption and its influence mechanism is great significantly for the coordinated management of coal and water consumption. The coal-water footprint is calculated based on ISO standard method to measure the space-time evolution trend of coal-water footprint in Yellow River basin in 2000-2017, using coal- water footprint pressure index evaluation to analysis the matching relation between coal and water, and using Kaya identities and LMDI model to analyze the driving effect of coal-water footprint. The conclusions are as follows: 1) The total coal-water footprint showed an increasing trend during the study period, and the coal-water footprint was mainly dominated by raw coal and thermal power generation. The coal-water footprint in Shanxi and Inner Mongolia was the highest, while that in Shaanxi was the lowest. 2) The coal-water footprint pressure index gradually increased, and gradually changed from the moderating type of coal-water relationship to the moderating type of coal-water relationship. From the perspective of spatial variation, Shanxi was the largest, with the intense type of coal-water relationship. Shaanxi followed closely, and Inner Mongolia was the smallest, both of which changed from the moderating type to the moderating type of coal-water relationship. 3) The main factors influencing the coal-water footprint pressure were economic effect and technological effect. The former had a gradually enhanced influence on the coal-water footprint pressure, while the latter had a gradually weakened influence on the coal-water footprint pressure. The spatial differentiation of each driving factor was obvious. The research results can provide reference for the sustainable utilization of coal and water resources in the coal-rich areas, and provide decision support for the resource management of ecological protection and high-quality development in the Yellow River Basin.
煤炭水足迹 / LMDI模型 / 煤–水关系 / 黄河流域 {{custom_keyword}} /
coal-water footprint / LMDI model / coal-water relationship / the Yellow River Basin {{custom_keyword}} /
[1] |
Cai Y P, Cai J Y, Xu L Y et al. Integrated risk analysis of water-energy nexus systems based on systems dynamics, orthogonal design and copula analysis[J]. Renewable and Sustainable Energy Reviews, 2019, 99: 125-137.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
Shang Y Z, Hei P F, Lu S B et al. China’s energy-water nexus: Assessing water conservation synergies of the total coal consumption cap strategy until 2050[J]. Applied Energy, 2018, 210: 643-660.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
Fan J L, Wei S J Zhang X et al. A comparison of the regional investment benefits of CCS retrofitting of coal-fired power plants and renewable power generation projects in China[J]. International Journal of Greenhouse Gas Control, 2020, 92: 102858
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
Zheng X Z, Wang C, Cai W J et al. The vulnerability of thermoelectric power generation to water scarcity in China: Current status and future scenarios for power planning and climate change[J]. Applied Energy, 2016, 171: 444-455.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
丁宁, 逯馨华, 杨建新, 等. 煤炭生产的水足迹评价研究[J]. 环境科学学报, 2016, 36(11): 4228-4233.
Ding Ning, Lu Xinhua, Yang Jianxin et al. Water footprint of coal production. Acta Scientiae Circumstantiae, 2016, 36(11): 4228-4233.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
关伟, 赵湘宁, 许淑婷. 中国能源水足迹时空特征及其与水资源匹配关系[J]. 资源科学, 2019, 41(11): 2008-2019.
Guan Wei, Zhao Xiangning, Xu Shuting. Spatiotemporal feature of the water footprint of energy and its relationship with water resources in China. Resources Science, 2019, 41(11): 2008-2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
Li Y M, Zhang B, Wang B et al. Evolutionary trend of the coal industry chain in China: Evidence from the analysis of I-O and APL model[J]. Resources, Conservation and Recycling, 2019, 145: 399-410.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
白景锋, 张海军. 中国水-能源-粮食压力时空变动及驱动力分析[J]. 地理科学, 2018, 38(10): 1653-1660.
Bai Jingfeng, Zhang Haijun. Spatio-temporal variation and driving force of water-energy-food pressure in China. Scientia Geographica Sinica, 2018, 38(10): 1653-1660.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
Chu C, Ritter W, Sun X H. Spatial variances of water-energy nexus in China and its implications for provincial resource interdependence[J]. Energy Policy, 2019, 125: 487-502.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
Chai L, Liao X W, Yang L et al. Assessing life cycle water use and pollution of coal-fired power generation in China using input-output analysis[J]. Applied Energy, 2018, 231: 951-958.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
Fan J L, Kong L S, Zhang X et al. Energy-water nexus embodied in the supply chain of China: Direct and indirect perspectives[J]. Energy Conversion and Management, 2019, 183: 126-136.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
Wang S G, Fath B, Chen B. Energy-water nexus under energy mix scenarios using input-output and ecological network analyses[J]. Applied Energy, 2019, 233-234: 827-839.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
孙才志, 郑靖伟. 基于MRIO与SNA的中国水资源空间转移网络分析[J]. 水资源保护, 2020, 36(1): 9-17.
Sun Caizhi, Zheng Jingwei. Analysis of China’s water resources spatial transfer network based on MRIO and SNA. Water Resources Protection, 2020, 36(1): 9-17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
Zhu Y N, Jiang S, Zhao Y et al. Life-cycle-based water footprint assessment of coal-fired power generation in China[J]. Journal of Cleaner Production, 2020, 254: 120098
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
吕倩, 刘海滨. 基于夜间灯光数据的黄河流域能源消费碳排放时空演变多尺度分析[J]. 经济地理, 2020, 40(12): 12-21.
Lvu Qian, Liu Haibin. Multiscale spatio-temporal characteristics of carbon emission of energy consumption in Yellow River Basin based on the nighttime light datasets. Economic Geography, 2020, 40(12): 12-21.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
武娜, 沈镭, 钟帅. 基于夜间灯光数据的晋陕蒙能源消费碳排放时空格局[J]. 地球信息科学学报, 2019, 21(7): 1040-1050.
Wu Na, Shen Lei, Zhong Shuai. Spatio-temporal pattern of carbon emissions based on nightlight data of Shanxi-Shaanxi-Inner Mongolia region of China. Journal of Geo-information Science, 2019, 21(7): 1040-1050.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
孙才志, 白天骄, 吴永杰, 等. 要素与效率耦合视角下中国人均灰水足迹驱动效应研究[J]. 自然资源学报, 2018, 33(9): 1490-1502.
Sun Caizhi, Bai Tianjiao, Wu Yongjie et al. Driving effect of per capita grey water footprint in China from the perspective of factor and efficiency coupling. Journal of Natural Resources, 2018, 33(9): 1490-1502.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
孙才志, 阎晓东. 基于MRIO的中国省区和产业灰水足迹测算及转移分析[J]. 地理科学进展, 2020, 39(2): 207-218.
Sun Caizhi, Yan Xiaodong. Estimation and transfer analysis of grey water footprint of provinces, regions and industries in China based on MRIO. Progress in Geography, 2020, 39(2): 207-218.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
李云玲, 郭旭宁, 郭东阳, 等. 水资源承载能力评价方法研究及应用[J]. 地理科学进展, 2017, 36(3): 342-349.
Li Yunling, Guo Xuning, Guo Dongyang et al. An evaluation method of water resources carrying capacity and application. Progress in Geography, 2017, 36(3): 342-349.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
韩琴, 孙才志, 邹玮. 1998-2012年中国省际灰水足迹效率测度与驱动模式分析[J]. 资源科学, 2016, 38(6): 1179-1191.
Han Qin, Sun Caizhi, Zou Wei. Grey water footprint efficiency measure and its driving pattern analysis on provincial scale in China from 1998 to 2012. Resources Science, 2016, 38(6): 1179-1191.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
Yoichi K. Impact of carbon dioxide emission on GNP growth: Interpretation of proposed scenarios[R]. Paris: Presentation to the Energy and Industry Subgroup,Response Strategies Working Group,IPCC,1989.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
Ma M D, Yan R, Du Y J et al. A methodology to assess China’s building energy savings at the national level: An IPAT-LMDI model approach[J]. Journal of Cleaner Production, 2017, 143: 784-793.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
Li H, Lin J, Zhao Y H et al. Identifying the driving factors of energy-water nexus in Beijing from both economy-and sector-wide perspectives[J]. Journal of Cleaner Production, 2019, 235: 1450-1464.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
Ang B W. Decomposition analysis for policymaking in energy: Which is the preferred method?[J]. Fuel and Energy Abstracts, 2004, 32(9): 1131-1139.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
Han R, Tang B J, Fan J L et al. Integrated weighting approach to carbon emission quotas: An application case of Beijing-Tianjin-Hebei region[J]. Journal of Cleaner Production, 2016, 131: 448-459.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
国家统计局能源统计司. 中国能源统计年鉴[M]. 北京: 中国统计出版社, 2000.
Department of Energy Statistics, National Bureau of Statistics . China energy statistical yearbook. Beijing: China Statistical Press, 2000.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
山西省统计局. 山西统计年鉴[M]. 北京: 中国统计出版社, 2021.
Shanxi Statistical Bureau. Shanxi statistical yearbook. Beijing: China Statistical Press, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
陕西省统计局. 陕西统计年鉴[M]. 北京: 中国统计出版社, 2021.
Shaanxi Statistical Bureau. Shaanxi statistical yearbook. Beijing: China Statistical Press, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
内蒙古自治区统计局. 内蒙古统计年鉴[M]. 北京: 中国统计出版社, 2021.
Inner Mongolia Autonomous Regional Bureau of Statistics. Inner Mongolia statistical yearbook. Beijing: China Statistical Press, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
国家环境保护总局. 清洁生产标准: 煤炭采选业(HJ 446-2008)[M]. 北京: 中国环境科学出版社, 2008.
State Environmental Protection Administration. Cleaner production standard: Coal mining industry (HJ 446-2008). Beijing: China Environmental Science Press, 2008.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
国家环境保护总局. 煤炭工业污染物排放标准[M]. 北京: 中国环境科学出版社, 2006.
State Environmental Protection Administration. Discharge standard of pollutants in coal industry. Beijing: China Environmental Science Press, 2006.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
朱法华, 钟鲁文, 王强, 等. 火电行业主要污染物产排污系数[M]. 北京: 中国环境科学出版社, 2009.
Zhu Fahua, Zhong Luwen, Wang Qiang et al. Coefficient of production and discharge of main pollutants in thermal power industry. Beijing: China Environmental Science Press, 2009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
国家环境保护总局. 地表水环境质量标准(GB 3838-2002)[M]. 北京: 中国环境科学出版社, 2002.
State Environmental Protection Administration. Environmental quality standard for surface water (GB 3838-2002). Beijing: China Environmental Science Press, 2002.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
时光, 任慧君, 乔立瑾, 等. 黄河流域煤炭高质量发展研究[J]. 煤炭经济研究, 2020, 40(8): 36-44.
Shi Guang, Ren Huijun, Qiao Lijin et al. Research on high-quality development of coal in the Yellow River Basin. Coal Economic Research, 2020, 40(8): 36-44.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
刘备, 杨洒洒. 技术进步与能源消费的动态关联效应——基于MS-VAR模型的实证检验[J]. 工业技术经济, 2020, 39(11): 75-82.
Liu Bei, Yang Sasa. Dynamic correlation between technical progress and energy consumption—Empirical test based on MS-VAR model. Journal of Industrial Technological Economics, 2020, 39(11): 75-82.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |