Loading [MathJax]/jax/output/SVG/jax.js

颗粒材料的堆积密度与均匀性研究进展

刘樟荣, 叶为民, 崔玉军, 张召, 王琼, 陈永贵

刘樟荣, 叶为民, 崔玉军, 张召, 王琼, 陈永贵. 2020: 颗粒材料的堆积密度与均匀性研究进展. 工程地质学报, 28(S1): 56-63. DOI: 10.13544/j.cnki.jeg.2020-354
引用本文: 刘樟荣, 叶为民, 崔玉军, 张召, 王琼, 陈永贵. 2020: 颗粒材料的堆积密度与均匀性研究进展. 工程地质学报, 28(S1): 56-63. DOI: 10.13544/j.cnki.jeg.2020-354
LIU Zhangrong, YE Weimin, CUI Yujun, ZHANG Zhao, WANG Qiong, CHEN Yonggui. 2020: A REVIEW ON THE PACKING DENSITY AND HOMOGENEITY OF GRANULAR MATERIALS. JOURNAL OF ENGINEERING GEOLOGY, 28(S1): 56-63. DOI: 10.13544/j.cnki.jeg.2020-354
Citation: LIU Zhangrong, YE Weimin, CUI Yujun, ZHANG Zhao, WANG Qiong, CHEN Yonggui. 2020: A REVIEW ON THE PACKING DENSITY AND HOMOGENEITY OF GRANULAR MATERIALS. JOURNAL OF ENGINEERING GEOLOGY, 28(S1): 56-63. DOI: 10.13544/j.cnki.jeg.2020-354

颗粒材料的堆积密度与均匀性研究进展

基金项目: 

国家重点研发计划(资助号:2019YFC1509900),中国博士后科学基金(资助号:2020M671217),国家自然科学基金(资助号:41527801,41672271,41807237).

详细信息
    作者简介:

    刘樟荣(1990-),男,博士,博士后,主要从事非饱和土力学与工程地质方面的研究工作.E-mail:liuzr@tongji.edu.cn

  • 中图分类号: P642.1

A REVIEW ON THE PACKING DENSITY AND HOMOGENEITY OF GRANULAR MATERIALS

Funds: 

This research is supported by the National Key R&D Program of China (Grant No.2019YFC1509900), the China Postdoctoral Science Foundation (Grant No.2020M671217) and the National Natural Science Foundation of China (Grant Nos.41527801, 41672271, 41807237)

  • 摘要: 颗粒是一种常见的工业与工程材料,其堆积密度与均匀性是影响产品和工程质量的重要因素。本文全面回顾和总结了国内外学者在颗粒堆积密度和均匀性方面的研究成果和最新进展。结果表明,颗粒材料的堆积密度与颗粒自身性质(颗粒大小、形状、表面粗糙度等)、容器性质(容器尺寸、形状和内表面粗糙度等)、堆积方法(下落高度、振动条件、装料强度和装填顺序等)、粒径比和粒径级配有关;堆积不均匀性(离析程度)随颗粒粒径差异、密度差异和振动加速度的增大而增大,随粒径范围、粒组数量和振动频率的增大而减小,而受颗粒形状的影响相对较小。对于作为高放废物深地质处置库缓冲/回填材料的膨润土颗粒,科学、高效的颗粒原位填充技术是今后值得深入研究的方向。
    Abstract: Granular materials are widely used in both industrial and engineering fields, where the quality of products and projects are highly dependent on the packing density and homogeneity of the granular materials. In this paper, previous studies conducted by domestic and overseas scholars on the packing density and homogeneity of granular materials are carefully reviewed and summarized. Results in the literature indicate that the packing density are related to the particle properties(particle size, shape and surface roughness, etc.),container properties(container size, shape and surface roughness, etc.),packing techniques(drop height, vibration condition, filling intensity and sequence, etc.),particle size ratio and distribution. The packing inhomogeneity(degree of segregation) increases with the increase of particle size difference, density difference and vibration acceleration, but decreases with the increase of size range, size class amount and vibration frequency, with indistinct susceptibility to particle shape. As for bentonite pellets used in high-level radioactive waste repository, it is worth devoting to improve the scientific and efficient in-situ packing techniques.
  • 钙华(Travertine或Tufa)是一种大孔隙次生碳酸钙,是岩溶水在适宜的环境下碳酸钙过饱和沉积而形成(李华举等,2006Hammer et al., 2007Rainey et al., 2010),一般具有多孔隙的海绵状结构,薄层壳状或块状构造。根据沉积模式,钙华可分为泉水钙华、河流障钙华、湖泊钙华和沼泽钙华,不同沉积成因的钙华造就了绚丽多彩的自然景观,如我国四川的黄龙景区、九寨沟五彩池、云南白水台和土耳其的棉花堡等。钙华对气候和环境极具敏感性,且沉积速率较快,因而适合高分辨率和短时间尺度的古气候环境重建(王海静,2014),国内外专家对钙华在气候方面的意义做了大量的研究(胡欣欣等,2008Sierralta et al., 2010刘再华等,2016汪智军等,2018)。

    由于钙华主要分布于水流活动频繁的碳酸岩地区,很少用于建筑物的持力层,因此对钙华的工程特性研究较少。Dolezel et al.(2004)对钙华的棱柱体抗压强度和弹性模量进行了室内测试,结果表明,钙华的抗压强度为50.8 MPa,弹性模量可达20.19 GPa,但对于钙华的野外原位测试,国内外文献鲜有涉及。随着我国“一带一路”倡议的实施,岩土工程领域在服务工程建设中遇到的特殊岩土越来越多,系统地评价这类岩土的特性对于推动我国海外的工程建设具有重要指导意义(张先伟等,2018)。本文以南美洲玻利维亚东南地区的钙华层为研究对象,对这一特殊岩土的物理及力学性质进行试验研究。

    项目地点位于南美洲玻利维亚东南角,靠近巴西的南托马格罗索州和巴拉圭的上巴拉圭省,拟建建筑物包括冶金厂房和配套设施,该项目是我国构建“一带一路”倡议在南美地区建设的重要工程。通过工程地质勘察可知,场地地表土层为第四系上更新统黏土(Q3pl),平均厚度约2.0 m,黏土以下为湖沼相沉积的钙华层,厚度0.90~14.70 m,灰白色-白色,干-稍湿,可见蜂窝状或海绵状空隙,部分空隙被黏粒填充,含角砾及碎石,钙华层以下为中等风化泥质粉砂岩。根据现场水位观测,地下水主要为基岩裂隙水,赋存于泥质粉砂岩中,钙华层中基本不含地下水。

    钙华层具有较高的SPT值,上部2~3 m范围内标准贯入N值为39~77击,平均47.4击;3 m以下深度范围内标贯50击时的平均贯入深度为13.4 cm,对钙华层进行重型动力触探测试,发现穿心锤有反弹现象,探头无法连续贯入。

    工程勘察中发现,钙华浸水后的稳定性较差,笔者在上部2 m范围内的钙华层中采取试样,放入杯中,向杯中注入清水并没过试样,观察试样的变化情况,结果显示钙华在水中逐渐崩解,2个小时后分解为碎块(图 1图 2)。

    图  1  水杯中钙华试样
    Figure  1.  Travertine sample in cup
    图  2  钙华试样在水中崩解
    Figure  2.  Decomposition of travertine

    自然界中的岩土体均存在大量裂隙(赵建军等,2018),水流入渗会对其力学性质产生重大影响。项目所处的玻利维亚东南地区雨季较长,年平均降雨量约为1406 mm。由于钙华浸水后的稳定性较差,如果以该层作为建筑物的持力层,基坑开挖后,降雨可能会沿着裂隙渗入基底,对地基的稳定性、承载力和变形等产生不利影响,进而危及建筑物的使用性能,因此在勘察期间,笔者布置了相关试验,对钙华层的物理力学性质做试验研究,为工程建设提供技术支持。

    试验分为岩矿鉴定和现场测试。岩矿鉴定试验用于了解钙华的主要矿物成分和结构特征;现场试验分为渗水试验、载荷试验和湿陷性试验,渗水试验用于测试水在钙华中的渗透速率,载荷试验用于测试钙华在原位条件和浸水条件下的地基承载力,分析水对钙华承载力的影响,湿陷性试验测试钙华在恒定荷载和长时间浸水状态下的变形特征,为判定钙华地基的长久稳定性提供依据。

    岩矿鉴定所选标本呈黄白色,泥状结构,块状构造,表观密度为2.2g·cm-3,加稀盐酸后剧烈起泡。鉴定结果显示,本场区钙华的矿物成分主要为方解石,方解石菱形解理、闪突起显著,干涉色为高级白、一轴晶,负光性(图 3)。

    图  3  岩矿鉴定单偏光10×5镜像图
    Figure  3.  Single polarized photo

    渗透系数是渗流分析的基础,是研究土体稳定性的重要参数(赵梦怡等,2018),为测得钙华层的渗透系数,笔者在现场进行了大型试坑的渗水试验,试验参照《水文地质手册》(中国地质调查局,2012)关于试坑渗水试验的要求进行(图 4)。开挖试坑深度为3. 65 m,坑底尺寸0. 7 m×2. 4 m,揭露钙华层厚度2.0 m。向坑底注水,保持常水头高度为0.1 m,按照5 min、10 min、20 min、30 min、30 min的时间间隔记录入渗水量的变化情况,当渗入水量持续稳定2个小时后,试验结束。

    图  4  现场渗水试验
    Figure  4.  Water injection test

    根据渗水试验达西公式:

    v=Q/F (1)

    式中:v为渗透速率(cm·s-1);Q为入渗水量(cm);F为时间(s)。

    计算各时间段的平均渗透速度,根据试验结果绘制渗透速度历时曲线图(图 5)。

    图  5  渗透速度历时曲线图
    Figure  5.  Graph of permeation velocity versus time
    图  6  载荷试验
    Figure  6.  Bearing capacity test
    图  7  溶陷性试验
    Figure  7.  Collapsibility test

    图 5中曲线表明,水在钙华层中的渗透速度随时间延长而逐渐减小。在前20 min内,渗透速度由8.0×10-3cm·s-1降低至4.0×10-3cm·s-1,20 min至50 min变化梯度有所降低,由4.0×10-3cm·s-1降低至2.0×10-3cm·s-1,在1.5个小时之后渗透速度基本维持不变。本次试验测得钙华层最终的渗透系数为1.7×10-3cm·s-1,属于中等透水地层。

    钙华是本场区建筑物拟选用的持力层,鉴于钙华试样在水杯中迅速崩解的现象,笔者在现场安排了浸水载荷试验,以研究钙华在浸水状态下的承载力和变形特征。

    由于目前缺少针对钙华的载荷试验规程,本次载荷试验依据《盐渍土地区建筑技术规范》(GB/T50942-2014)进行。试验共分2组,其中P1试验点在试验前进行浸水,水头高度为30 cm,浸水5 d后进行分级加载,用以测试钙华在浸水状态下的承载力和变形特征;P2试验点的钙华保持天然状态,先分级加载至200 kPa,待沉降稳定后保持荷载不变,向试坑内均匀注水,水头高度恒定为30 cm,测试钙华在恒载作用下的总溶陷量,判断钙华层的溶陷性。

    本试验采用重型挖掘机作为反力装置,液压千斤顶逐级加载,通过试验分析仪记录每级荷载下的压力和位移。承压板采用正方形钢板,P1点承压板的面积为0.25 m2,P2点承压板的面积为0.50 m2

    试验严格按照规范的要求进行,在第1个小时内,每间隔15 min测量一次沉降量,以后每隔0.5 h测一次沉降量,若连续2 h沉降量小于0.1 mm,则施加下一级荷载。若出现以下情况,则终止试验:

    (1) 承压板周围土体有隆起或挤出现象;

    (2) 地基沉降量急剧增加,P-s曲线斜率突变;

    (3) 沉降量s与承压板宽度b的比值大于0.06。

    在计算钙华的变形模量(E0)时,选取P-s关系曲线的初始直线段,根据《建筑地基检测技术规范》(JGJ340-2015)的公式计算:

    E0=I0(1μ2)P×bs (2)

    式中:P为试验施加的荷载(kPa);b为承压板的边长(m);s为每级荷载的沉降量(mm);m为泊松比(取0.27);I0为承压板形状系数(取0.886)。

    P1试验点用以测试钙华在浸水状态下的承载力和变形特征。试验设定每级加载80 kPa,加载7级后反力用尽而停止试验,实际最大荷载为560 kPa。根据实测的荷载与沉降数值,绘制出P-s关系曲线图(图 8)。

    图  8  P1试验点P-s曲线
    Figure  8.  P-s curve at P1 test point

    在试验荷载作用下,P1点的地基未发生破坏,P-s曲线的斜率变化较小,未出现比例界限。根据《建筑地基检测技术规范》规定:P-s曲线未出现比例界限时,可采用相对变形值确定承载力特征值,且所取的承载力不应大于最大试验荷载的一半。根据规范规定,本试验的相对变形值取0.01b,其对应的荷载为388 kPa,而最大加载量的一半为280 kPa,因此判定钙华的地基承载力特征值为280 kPa,通过式(2)计算得到该点的变形模量E0为36.85 MPa。

    P2试验点用于测试钙华的溶陷性,试验设定每级加载100 kPa。首先保持地基的天然状态,分级加载至200 kPa,沉降稳定后保持压力不变,向试坑内均匀注入清水,水头高度为30 cm,观测钙华在常水头恒压条件下的溶陷特征,在持续浸水加载3 h后,钙华层的沉降趋于稳定。根据荷载和实测沉降数得到P-s关系曲线(图 9)。

    图  9  P2试验点P-s曲线
    Figure  9.  P-s curve at P2 point

    根据P2点的P-s曲线,钙华在天然状态下的荷载和变形呈现线弹性关系,当荷载增大至200 kPa时,地基的沉降量仅为2.57mm,变形模量E0可达45.39 MPa。在恒压条件下,浸水之后的沉降量会明显增加,总沉降量为3.71mm,比天然状态增加1.14mm。

    载荷试验结束后,试验人员将试坑中的积水排出,并在试坑中开挖探槽,测量水在钙华中的浸润深度,用以计算钙华在浸水状态下的溶陷系数。经测量,在浸水3 h后,钙华层的实际浸润深度为0.65 m。

    根据《盐渍土地区建筑规范》,溶陷系数可按下式计算:

    δ=Δs/hs (3)

    式中:hs为浸润深度(m);Δs为浸水后的沉降增量(m)。当溶陷系数大于或等于0.01时应判定为溶陷性土。

    根据P2点的P-s曲线,该点浸水后的附加沉降量Δs为1.14 mm,可计算得到钙华的溶陷系数δ为0.001 75,该系数远小于0.01,因此判定钙华为非溶陷性土。

    综合P1和P2点的试验成果,可知钙华具有较高的承载力,浸水后的承载力特征值不低于280 kPa;天然状态下的变形模量可达45.39 MPa,浸水后的变形模量虽然有所降低,但仍然可以达到36.85 MPa,钙华具有承载力高、压缩性低的特点,是一种良好的建筑物持力层。

    钙华是场区大部分建筑物的基底持力层,对建筑物的安全、造价和工期等均会产生重要影响,在建筑设计和施工过程中,应根据钙华的特性采取相应的措施。

    (1) 钙华遇水后稳定性较差,在浸水状态下会产生崩解现象,这种特性会对基坑边坡的稳定性产生不利影响。在流水冲刷溶蚀作用下,钙华边坡表面可能会有岩块滑落,影响边坡安全。宜将基坑和基础施工安排在旱季,若在雨季施工,应做好基坑坡顶水流的拦截和边坡坡面的覆盖,杜绝流水与钙华层的接触。

    (2) 钙华在天然状态下承载力较高,遇水后承载力有降低的趋势。在基槽开挖时,应尽可能保持基槽的干燥状态,做好防水垫层并及时浇筑混凝土;若遇到降雨天气,应做好地基土的覆盖,将水流迅速排出基槽。根据试验结果,钙华的渗透系数较小,短时间的水流对钙华层的浸润深度较小,当建筑物基底钙华层受到雨水影响时,可将受影响的钙华层挖除,将基础下落至干燥的钙华层。

    (3) 场区表层的黏性土是良好的天然隔水层,在建筑物肥槽回填时,应采用黏性土分层回填并压实,达到隔断地表水渗入钙华层的目的。

    本文通过岩矿鉴定、渗水试验和载荷试验,分析了钙华的矿物组成和渗透系数,并对钙华的力学性质做出研究,得出以下结论:

    (1) 钙华的主要成分为碳酸盐,在微观状态下呈实心或空心球状。

    (2) 钙华属于非溶陷性土,具有承载力高、压缩性低的特点,在天然状态和浸水状态的变形模量分别为45.39 MPa和36.85 MPa,地基承载力特征值大于280 kPa,是一种良好的天然地基。

    (3) 钙华的渗透系数为1.7×10-3cm·s-1,浸水后的浸润厚度较小,通过地表截水和基槽覆盖等措施,可有效降低水流对地基承载力的不利影响。

  • Ahmad K,Smalley I J. 1973. Observation of particle segregation in vibrated granular systems[J]. Powder Technology,8(1):69-75.

    Alizadeh M,Hassanpour A,Pasha M,et al. 2017. The effect of particle shape on predicted segregation in binary powder mixtures[J]. Powder Technology,319:313-322.

    An X Z,Chai H Y. 2016a. Packing densification of binary cylindrical particle mixtures under 3D mechanical vibrations[J]. Advanced Powder Technology,27:2489-2495.

    An X Z,Li C X,Qian Q. 2016b. Experimental study on the 3D vibrated packing densification of binary sphere mixtures[J]. Particuology,27(4):110-114.

    An X Z,Li C X,Yang R Y,et al. 2009. Experimental study of the packing of mono-sized spheres subjected to one-dimensional vibration[J]. Powder Technology,196:50-55.

    An X Z,Li C X. 2013. Experiments on densifying packing of equal spheres by two-dimensional vibration[J]. Particuology,11:689-694.

    Andreasen A H M,Andersen J. 1930. Relation between grain size and interstitial space in products of unconsolidated granules[J]. Kolloid-Zeitschrift,50:217-228.

    Aste T,Weaire D. 2008. The pursuit of perfect packing[M]. New York:Taylor & Francis Group.

    Bernal J D,Mason J. 1960. Packing of spheres:Co-ordination of randomly packed spheres[J]. Nature,188:910-911.

    Berryman J G. 1983. Random close packing of hard spheres and disks[J]. Physical Review A,27(2):1053-1061.

    Cano-Pleite E,Hernández-Jiménez F,Acosta-Iborra A,et al. 2017. Segregation of equal-sized particles of different densities in a vertically vibrated fluidized bed[J]. Powder Technology,316:101-110.

    Cho G C,Dodds J,Santamarina J C. 2006. Particle shape effects on packing density, stiffness, and strength:natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering,132(5):591-602.

    Ciamarra M P,De Vizia M D,Fierro A. 2006. Granular species segregation under vertical tapping:Effects of size, density, friction, and shaking amplitude[J]. Physical Review Letters, 96(5):058001.

    Combarros M,Feise H J,Zetzener H,et al. 2014. Segregation of particulate solids:Experiments and DEM simulations[J]. Particuology,12:25-32.

    Delaney G W,Cleary P W. 2010. The packing properties of superellipsoids[J]. Europhysics Letters, 89(3):34002.

    Devriendt L,Gatumel C,Berthiaux H. 2013. Experimental evidence of mixture segregation by particle size distribution[J]. Particulate Science & Technology,31(6):653-657.

    Donev A,Cisse I,Sachs D,et al. 2004. Improving the density of jammed disordered packings using ellipsoids[J]. Science, 303(5660):990-993.

    Hales T C. 2005. A proof of the Kepler conjecture[J]. Annals of Mathematics,162:1065-1185.

    Jain A,Metzger M J,Glasser B J. 2013. Effect of particle size distribution on segregation in vibrated systems[J]. Powder Technology,237:543-553.

    Jiao Y,Stillinger F H,Torquato S. 2009. Optimal packings of superballs[J]. Physical Review E, 79(1):041309.

    Kwan A K H,Mora C F. 2001. Effects of various shape parameters on packing of aggregate particles[J]. Magazine of Concrete Research,53:91-100.

    Li Y B,Li S,Liu X L,et al. 2020. Effect of particle breakage on compression properties of calcareous sands with odemeter tests[J]. Journal of Engineering Geology,28(2):352-359.

    Liffman K,Muniandy K,Rhodes M,et al. 2001. A segregation mechanism in a vertically shaken bed[J]. Granular Matter,3(4):205-214.

    Liu F C,Wu M T,Wang H D. 2019. Effect of particle size ratio and mix ratio on mechanical behavior of rubber-sand mixtures[J]. Journal of Engineering Geology,27(2):376-389.

    Liu Z R,Ye W M,Cui Y J,et al. 2020. Investigation on vibration-induced segregation behaviour of crushed GMZ bentonite pellet mixtures[J]. Construction and Building Materials, 241:117949.

    Liu Z R,Ye W M,Zhang Z,et al. 2019a. Particle size ratio and distribution effects on packing behaviour of crushed GMZ bentonite pellets[J]. Powder Technology,351:92-101.

    Liu Z R,Ye W M,Zhang Z,et al. 2019b. A nonlinear particle packing model for multi-sized granular soils[J]. Construction and Building Materials,221:274-282.

    Liu Z R,Ye W M,Zhang Z,et al. 2020. A review on packing and hydro-mechanical behaviour of bentonite pellet mixtures[J]. Journal of Engineering Geology,28(2):294-305.

    Liu Z R. 2019. Investigation on the packing behaviour and thermal-hydraulic properties of GMZ bentonite pellet mixtures[D]. Shanghai:Tongji University.

    Mahmoudi Y,Cherif T A,Hazout L,et al. 2020. Packing density and overconsolidation ratio effects on the mechanical response of granular soils[J]. Geotechnical and Geological Engineering,38:723-742.

    Majid M,Walzel P. 2009. Convection and segregation in vertically vibrated granular beds[J]. Powder Technology,192:311-317.

    May L B H,Golick L A,Phillips K C,et al. 2010. Shear-driven size segregation of granular materials:Modeling and experiment[J]. Physical Review E, 81(1):051301.

    McGeary R K. 1961. Mechanical packing of spherical particles[J]. Journal of the American Ceramic Society,44(10):513-522.

    Meng L,Lu P,Li S,et al. 2012. Shape and size effects on the packing density of binary spherocylinders[J]. Powder Technology,228:284-294.

    Metzger M J,Remy B,Glasser B J. 2011. All the Brazil nuts are not on top:Vibration induced granular size segregation of binary, ternary and multi-sized mixtures[J]. Powder Technology,205(1):42-51.

    Navarrete I,Lopez M. 2017. Understanding the relationship between the segregation of concrete and coarse aggregate density and size[J]. Construction and Building Materials,149:741-748.

    Peng S Q,Xu Q,Li H J,et al. 2019. Grain size distribution analysis of landslide deposits with reliable image identification[J]. Journal of Engineering Geology,27(6):1290-1301.

    Qian Q,An X Z,Wang Y,et al. 2016. Physical study on the vibrated packing densification of mono-sized cylindrical particles[J]. Particuology,29:120-125.

    Rahman M,Shinohara K,Zhu H P,et al. 2011. Size segregation mechanism of binary particle mixture in forming a conical pile[J]. Chemical Engineering Science,66(23):6089-6098.

    Rosato A,Blackmore D L,Zhang N H,et al. 2002. A perspective on vibration-induced size segregation of granular materials[J]. Chemical Engineering Science,57(2):265-275.

    Rosato A,Strandburg K J,Prinz F,et al. 1987. Why the Brazil nuts are on top:Size segregation of particulate matter by shaking[J]. Physical Review Letters,58(10):1038-1040.

    Rousé P C,Fannin R J,Shuttle D A. 2008. Influence of roundness on the void ratio and strength of uniform sand[J]. Géotechnique,58(3):227-231.

    Rowe P N,Nienow A W. 1976. Particle mixing and segregation in gas fluidised beds. A review[J]. Powder Technology,15(2):141-147.

    Savage S B,Lun C K K. 1988. Particle size segregation in inclined chute flow of dry cohesionless granular solids[J]. Journal of Fluid Mechanics,189:311-335.

    Scott G D. 1960. Packing of spheres[J]. Nature,188:908-909.

    Shimoska A,Nousou I,Shirakawa Y,et al. 2013. Effects of particle shape and size distribution on size segregation of particles[J]. Journal of Chemical Engineering of Japan,46(3):187-195.

    Sohn H Y,Moreland C. 1968. The effect of particle size distribution on packing density[J]. Canadian Journal of Chemical Engineering,46(3):162-167.

    Suzuki M,Shinmura T,Iimura K,et al. 2008. Study of the wall effect on particle packing structure using x-ray micro computed tomography[J]. Advanced Powder Technology,19(2):183-195.

    Tang P,Puri V M. 2004. Methods for minimizing segregation:a review[J]. Particulate Science and Technology,22(4):321-337.

    Tang P,Puri V M. 2007. Segregation quantification of two-component particulate mixtures:effect of particle size, density, shape, and surface texture[J]. Particulate Science and Technology,25(6):571-588.

    Tangri H,Guo Y,Curtis J S. 2017. Packing of cylindrical particles:DEM simulations and experimental measurements[J]. Powder Technology,317:72-82.

    Wakeman R J. 1975. Packing densities of particles with lognormal size distributions[J]. Powder Technology,11(3):297-299.

    Wang J. 2019. Progress of geological disposal of high-level radioactive waste in China in the 21st Century[J]. Atomic Energy Science and Technology,53(10):2072-2081.

    Westman A E R,Hugill H R. 1930. The packing of particles[J]. Journal of the American Ceramic Society,13:767-779.

    Whyte L L,Mason B J. 1966. The six-cornered snowflake[M]. Oxford:Oxford University Press.

    Williams J C. 1976. The segregation of particulate materials:A review[J]. Powder Technology,15(2):245-251.

    Xie Z,An X,Wu Y,et al. 2017. Experimental study on the packing of cubic particles under three-dimensional vibration[J]. Powder Technology,317:13-22.

    Yang R Y,Yu A B,Choi S K,et al. 2008. Agglomeration of fine particles subjected to centripetal compaction[J]. Powder Technology,184(1):122-129.

    Yu A B,Bridgwater J,Burbidge A. 1997. On modeling of the packing of fine particles[J]. Powder Technology,92(3):185-194.

    Yu A B,Feng C L,Zou R P,et al. 2003. On the relationship between porosity and interparticle forces[J]. Powder Technology,130(1):70-76.

    Yu A B,Standish N. 1987. Porosity calculations of multi-component mixtures of spherical particles[J]. Powder Technology,52(3):233-241.

    Yu A B,Zou R P,Standish N. 1992. Packing of ternary mixtures of nonspherical particles[J]. Journal of the American Ceramic Society,75(10):2765-2772.

    Zhang Z P,Liu L F,Yuan Y D,et al. 2001. A simulation study of the effects of dynamic variables on the packing of spheres[J]. Powder Technology,116(1):23-32.

    Zhang Z,Ye W M,Liu Z R,et al. 2018. Influences of PSD curve and vibration on the packing dry density of crushed bentonite pellet mixtures[J]. Construction and Building Materials,185:246-255.

    Zhao J,Li S X,Jin W W,et al. 2012. Shape effects on the random-packing density of tetrahedral particles[J]. Physical Review E, 86(3):031307.

    Zhao S W,Zhang N,Zhou X W,et al. 2017a. Particle shape effects on fabric of granular random packing[J]. Powder Technology,310:175-186.

    Zhao B,An X Z,Wang Y,et al. 2017b. DEM dynamic simulation of tetrahedral particle packing under 3D mechanical vibration[J]. Powder Technology,317:171-180.

    Zheng G,Xu Q,Peng S Q. 2019. Mechanism analysis of the accumulation characteristics of rock avalanche[J]. Journal of Engineering Geology,27(4):842-852.

    Zhou Z Y,Zou R P,Pinson D,et al. 2011. Dynamic simulation of the packing of ellipsoidal particles[J]. Industrial & Engineering Chemistry Research,50(16):9787-9798.

    Zou R P,Gan M L,Yu A B. 2011. Prediction of the porosity of multi-component mixtures of cohesive and non-cohesive particles[J]. Chemical Engineering Science,66:4711-4721.

    Zou R P,Yu A B. 1996a. Wall effect on the packing of cylindrical particles[J]. Chemical Enoineering Science,51:1177-1180.

    Zou R P,Yu A B. 1996b. Evaluation of the packing characteristics of mono-sized non-spherical particles[J]. Powder Technology,88(1):71-79.

    李彦彬,李飒,刘小龙,等. 2020. 颗粒破碎对钙质砂压缩特性影响的试验研究[J]. 工程地质学报,28(2):352-359.
    刘方成,吴孟桃,王海东. 2019. 粒径比和配比对橡胶砂力学性能的影响研究[J]. 工程地质学报,27(2):376-389.
    刘樟荣,叶为民,张召,等. 2020. 膨润土颗粒混合物的堆积性质与水-力特性研究进展[J]. 工程地质学报,28(2):294-305.
    刘樟荣. 2019.

    高庙子膨润土颗粒混合物的堆积性质与考虑温度影响的水力特性研究[D]. 上海:同济大学.

    彭双麒,许强,李骅锦,等. 2019. 基于高精度图像识别的堆积体粒径分析[J]. 工程地质学报,27(6):1290-1301.
    王驹. 2019. 中国高放废物地质处置21世纪进展[J]. 原子能科学技术,53(10):2072-2082.
    郑光,许强,彭双麒. 2019. 滑坡-碎屑流的堆积特征及机理分[J]. 工程地质学报,27 (4):842-852.
  • 期刊类型引用(2)

    1. 陈龙伟,陈童,王云龙,王维铭. 标准贯入试验锤击贯入能量测试与分析. 工程地质学报. 2023(05): 1757-1766 . 本站查看
    2. 张强. 西藏自治区雄巴地区钙华沉积机制及其地质找矿意义. 西部资源. 2022(01): 10-12 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  1312
  • HTML全文浏览量:  244
  • PDF下载量:  119
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-07-01
  • 修回日期:  2020-07-28

目录

/

返回文章
返回