四川盆地侏罗系致密砂岩弹性特征及岩石物理建模

王斌, 陈祥忠, 陈娟, 姚军, 谭开俊. 2020. 四川盆地侏罗系致密砂岩弹性特征及岩石物理建模. 地球物理学报, 63(12): 4528-4539, doi: 10.6038/cjg2020O0346
引用本文: 王斌, 陈祥忠, 陈娟, 姚军, 谭开俊. 2020. 四川盆地侏罗系致密砂岩弹性特征及岩石物理建模. 地球物理学报, 63(12): 4528-4539, doi: 10.6038/cjg2020O0346
WANG Bin, CHEN XiangZhong, CHEN Juan, YAO Jun, TAN KaiJun. 2020. Elastic characteristics and petrophysical modeling of the Jurassic tight sandstone in Sichuan Basin. Chinese Journal of Geophysics (in Chinese), 63(12): 4528-4539, doi: 10.6038/cjg2020O0346
Citation: WANG Bin, CHEN XiangZhong, CHEN Juan, YAO Jun, TAN KaiJun. 2020. Elastic characteristics and petrophysical modeling of the Jurassic tight sandstone in Sichuan Basin. Chinese Journal of Geophysics (in Chinese), 63(12): 4528-4539, doi: 10.6038/cjg2020O0346

四川盆地侏罗系致密砂岩弹性特征及岩石物理建模

  • 基金项目:

    国家科技重大专项课题"下古生界-前寒武系地球物理勘探关键技术研究"(2016ZX05004-003)资助

详细信息
    作者简介:

    王斌, 男, 1985年生, 博士, 高级工程师, 主要从事地球探测与信息技术研究.E-mail:67244992@qq.com

    通讯作者: 陈祥忠, 男, 1982年生, 博士, 高级工程师, 主要从事地球探测与信息技术研究.E-mail:6447316@163.com
  • 中图分类号: P631

Elastic characteristics and petrophysical modeling of the Jurassic tight sandstone in Sichuan Basin

More Information
  • 近年来围绕四川盆地侏罗系陆相致密砂岩已取得了勘探突破,其中川中—川西过渡带具备形成大气田的地质条件,但对该套致密砂岩弹性性质变化规律的研究还较少,致使利用地震方法进行"甜点"储层预测的精度不高.本文利用四川盆地侏罗系沙溪庙组32块样品开展了系统的声学测量,在此基础上,分析了样品弹性性质的变化规律.结合X射线衍射矿物组分分析、扫描电镜、铸体薄片和岩石薄片特征确定了不同成岩作用对岩石储集性能的影响.研究结果表明,研究区致密砂岩储层表现为孔隙型储层,受差异性成岩作用影响,黏土含量、钙质含量和硅质含量的差异以及它们分布特征之间的差异对岩石弹性性质造成了很大的影响.在研究区对岩石物性及弹性性质有明显影响的成岩作用包括早期的钙质胶结作用、压实作用和溶蚀作用,因此针对不同时期的成岩作用对岩石弹性及物性的影响,利用接触-胶结模型、微分等效模量模型和临界孔隙度校正的Hashin-Shtrikman上限模型建立了研究区致密砂岩的岩石物理模型.

  • 加载中
  • 图 1 

    四川盆地沙溪庙组致密砂岩样品矿物组分三角图

    Figure 1. 

    Petrological features of the tight sandstones of the Jurassic Shaximiao Formation in the Sichuan Basin

    图 2 

    四川盆地致密砂岩的典型成岩作用微观特征

    Figure 2. 

    Typical diagenetic processes for the tight sandstones in Sichuan Basin

    图 3 

    研究区致密砂岩纵波速度与密度的交会图

    Figure 3. 

    P-wave velocity versus density for the tight sandstone in the study area

    图 4 

    致密砂岩样品纵波速度与横波速度的交会图

    Figure 4. 

    P-wave velocity versus S-wave velocity for the tight sandstone in the study area

    图 5 

    研究区致密砂岩样品孔隙度与渗透率的交会图

    Figure 5. 

    Porosity versus permeability for the tight sandstone in the study area

    图 6 

    研究区致密砂岩样品物性参数与黏土含量的交会图

    Figure 6. 

    Porosity and permeability versus clay content for the tight sandstone in the study area

    图 7 

    致密砂岩样品速度与孔隙度的交会图

    Figure 7. 

    Velocity versus porosity for tight sandstone

    图 8 

    致密砂岩样品纵、横波速度随黏土含量变化关系

    Figure 8. 

    Velocity varying with clay content for the tight sandstone of the Shaximiao Formation reservoirs

    图 9 

    矿物组分对致密砂岩样品纵、横波速度及速度比的影响

    Figure 9. 

    Effects of mineral composition on VP and VS and VP/VS of tight sandstone specimens

    图 10 

    临界孔隙度校正的Hashin-Shtrikman模型与实际测试结果的对比图

    Figure 10. 

    Comparison of between the Hashin-Shtrikman model which used the critical porosity corrected and actual test results

    图 11 

    四川盆地致密砂岩岩石物理模型

    Figure 11. 

    A novel petrophysical model for the tight sandstone of Sichuan Basin

    图 12 

    四川盆地致密砂岩理论岩石物理模型与实际样品比较

    Figure 12. 

    Comparison of the Sichuan Basin tight sandstone theoretical petrophysical model and actual samples

    图 13 

    四川盆地致密砂岩样品纵波阻抗与纵横波速度比的测试结果与理论模型对比

    Figure 13. 

    The impedence versus VP/VS comparison of test results with the Sichuan Basin tight sandstone modeling predictions

    表 1 

    致密砂岩样品矿物组分特征与岩石物理测试结果数据表

    Table 1. 

    Mineral composition and petrophysical test results of tight sandstone samples

    样品号 长度/cm 孔隙度/% 渗透率/mD 方解石/% 黏土总量/% 密度/(g·cm-3) 含水饱和度/% 纵波速度/(m·s-1) 横波速度/(m·s-1) 速度比
    C1 6.87 6.82 0.027 15.2 11.6 2.55 100 4926 3122 1.578
    C2 6.97 1.04 0.005 24.9 3.5 2.65 100 5704 3456 1.65
    C3 6.91 0.6 0.003 17.3 2 2.64 100 5674 3418 1.66
    C4 6.86 9.54 0.012 2.2 10.8 2.5 100 4850 2833 1.712
    C5 6.72 2.6 0.003 3.6 19.8 2.61 100 5243 2954 1.775
    C6 6.67 5.02 0.002 1.4 20.8 2.56 100 5225 2977 1.755
    C7 6.93 6.74 0.27 5.6 16 2.55 100 4895 2784 1.758
    C8 6.58 3.4 0.013 2.6 16.7 2.57 100 5087 2912 1.747
    C9 7.21 6.77 0.012 5.1 12.5 2.54 100 5164 3051 1.693
    C10 6.69 7.13 0.05 5.2 11.8 2.54 100 5108 3042 1.679
    C11 7.02 3.39 0.003 3.9 19.7 2.61 100 5001 2911 1.718
    C12 6.78 5.92 0.046 21.3 13.1 2.65 100 5233 2938 1.781
    C13 6.09 6.98 0.062 2.5 12.3 2.54 100 5060 2893 1.749
    C14 5.88 7.1 0.078 5 8.9 2.53 100 5238 3024 1.732
    C15 6.23 9.37 0.11 1.5 12.5 2.53 100 4863 3002 1.62
    C16 6.2 8.02 0.068 2.8 10.1 2.49 100 5137 2871 1.789
    C17 6.42 8.33 0.077 3.3 9.7 2.48 100 4973 2762 1.801
    C18 6.61 9.54 0.27 3.1 9.5 2.49 100 4965 2711 1.831
    C19 6.54 8.17 0.12 0.5 14.2 2.48 100 4841 2718 1.781
    C20 6.55 6.4 0.063 0.4 13.4 2.53 100 5043 2859 1.764
    C21 5.68 6.77 0.071 0.3 10.3 2.54 100 5066 2850 1.778
    C22 6.07 8.71 0.083 0.1 12.4 2.54 100 5036 2811 1.792
    C23 5.1 2.3 0.008 19.6 7.5 2.63 100 5698 3616 1.576
    C24 5.1 8.9 0.281 24.4 4.1 2.45 100 5447 3365 1.619
    C25 5.1 9.5 0.355 23.1 4.9 2.59 100 5301 3333 1.59
    C26 5.1 5.4 0.125 20.1 5.3 2.57 100 5829 3394 1.717
    C27 5.1 6.2 0.163 34.5 2.3 2.57 100 5704 3688 1.547
    C28 5.1 6.6 0.236 15.5 5.1 2.45 100 5249 3332 1.575
    C29 5.1 10.6 0.438 19.2 1.7 2.52 100 5978 3693 1.619
    C30 5.1 6.1 0.238 32.7 2.6 2.47 100 4845 3017 1.606
    C31 5.1 12.8 0.868 13.6 1.1 2.47 100 4949 3102 1.595
    C32 5.1 10.1 0.477 20.2 1.6
    注:1 mD=0.987×10-15m2.
    下载: 导出CSV

    表 2 

    单矿物弹性参数表

    Table 2. 

    Elastic parameters of single mineral

    矿物名称 K/GPa G/GPa 泊松比
    石英 39 44 0.06
    长石 37.5 15 0.32
    黏土 17.5 7.5 0.33
    方解石 76.8 32 0.32
    下载: 导出CSV
  •  

    Cai X Y, Liu J L, Zhao P R, et al. 2020. Oil and gas exploration progress and upstream development strategy of Sinopec. China Petroleum Exploration (in Chinese), 25(1):11-19, doi:10.3969/j.issn.1672-7703.2020.01.002.

     

    Cao X C, Chang S Y, Li L S, et al. 2019. Seismic petrophysical modeling and application of carbonate porous reservoir. Progress in Geophysics (in Chinese), 34(6):2239-2246, doi:10.6038/pg2019CC0389.

     

    Dai J X, Ni Y Y, Wu X Q. 2012. Tight gas in China and its significance in exploration and exploitation. Petroleum Exploration and Development (in Chinese), 39(3):257-264. http://www.sciencedirect.com/science/article/pii/S1876380412600433

     

    Deng J X, Tang Z Y, Li Y, et al. 2018. The influence of the diagenetic process on seismic rock physical properties of Wufeng and Longmaxi Formation shale. Chinese Journal of Geophysics (in Chinese), 61(2):659-672, doi:10.6038/cjg2018L0062.

     

    Dvorkin J. 1996. Large strains in cemented granular aggregates:Elastic-plastic cement. Mechanics of Materials, 23(1):29-44. http://www.sciencedirect.com/science/article/pii/016766369500047X

     

    French M W, Worden R H, Mariani E, et al. 2012. Microcrystalline quartz generation and the preservation of porosity in sandstones:evidence from the Upper Cretaceous of the Subhercynian basin, Germany. Journal of Sedimentary Research, 82(7):422-434. http://adsabs.harvard.edu/abs/2012JSedR..82..422F

     

    Han D H, Nur A, Morgan D. 1986. Effects of porosity and clay content on wave velocities in sandstone. Geophysics, 51(11):2093-2107. doi: 10.1190/1.1442062

     

    Kowallis B J, Jones L E, Wang H F. 1984. Velocity-porosity-clay content systematics of poorly-consolidated sandstones. Journal of Geophysical Research:Solid Earth, 89(B12):10355-10364. doi: 10.1029/JB089iB12p10355

     

    Kuang Y, Sima L Q, Qu J H, et al. 2017. Influencing factors and quantitative evaluation for pore structure of tight glutenite reservoir:a case of the Triassic Baikouquan Formation in Ma 131 well field, Mahu Sag. Lithologic Reservoirs (in Chinese), 29(4):91-100, doi:10.3969/j.issn.1673-8926.2017.04.011.

     

    Lai J, Wang G W, Wang S N, et al. 2013. Research status and advances in the diagenetic facies of clastic reservoirs. Advances in Earth Science (in Chinese), 28(1):39-50. http://www.adearth.ac.cn/EN/10.11867/j.issn.1001-8166.2013.01.0039

     

    Li L G, He H Q, Fan T Z, et al. 2020. Oil and gas exploration progress and upstream development strategy of CNPC. China Petroleum Exploration (in Chinese), 25(1):1-10, doi:10.3969/j.issn.1672-7703.2020.01.001.

     

    Lin C M, Zhang X, Zhou J, et al. 2011. Diagenesis characteristics of the reservoir sandstones in Lower Shihezi Formation from Daniudi gas field, Ordos basin. Advances in Earth Science (in Chinese), 26(2):212-223. http://d.wanfangdata.com.cn/Periodical/dqkxjz201102009

     

    Luo J L, Liu X S, Fu X Y, et al. 2014. Impact of petrologic components and their diagenetic evolution on tight sandstone reservoir quality and gas yield:a case study from He 8 Gas-bearing reservoir of Upper Paleozoic in northern Ordos basin. Earth Science-Journal of China University of Geosciences (in Chinese), 39(5):537-545, doi:10.3799/dqkx.2014.051.

     

    Luo J L, Wei X S, Yao J L, et al. 2010. Provenance and depositional facies controlling on the Upper Paleozoic excellent natural gas-reservoir in northern Ordos basin, China. Geological Bulletin of China (in Chinese), 29(6):811-820. http://www.cqvip.com/Main/Detail.aspx?id=34287516

     

    Mavko G, Mukerji J, Dvorkin J. 2003. The Rock Physics Handbook:Tools for Seismic Analysis of Porous Media. New York:Cambridge University Press, 1-329.

     

    Tang D H, Tan X C, Tu L L, et al. 2020. Control factors and pore evolution of tight sandstone reservoir of the Second Member of Shaximiao Formation in the transition zone between central and western Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition) (in Chinese), 47(4):460-471, doi:10.3969/j.issn.1671-9727.2020.04.08.

     

    Tian Z, Xiao L Z, Liao G Z, et al. 2019. Study on digital rock reconstruction method based on sedimentological process. Chinese Journal of Geophysics (in Chinese), 62(1):248-259, doi:10.6038/cjg2019L0457.

     

    Wang D X. 2016. Study on the rock physics model of gas reservoirs in tight sandstone. Chinese Journal of Geophysics (in Chinese), 59(12):4603-4622, doi:10.6038/cjg20161222.

     

    Wang R F, Wang L X, Li J L, et al. 2020. Diagenesis and porosity evolution of ultra-low permeability and shallow layers sandstone reservoir. Progress in Geophysics (in Chinese), 35(4):1465-1470, doi:10.6038/pg2020CC0416.

     

    Xie J R, Tang D H, Chen H B, et al. 2004. Research on characteristics of reservoirs of member 1 of Shaximiao formation in Gongshanmiao oil field, Sichuan, China. Journal of Chengdu University of Technology (Science & Technology Edition) (in Chinese), 31(4):368-374. http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200404007.htm

     

    Xing W J, Wu K L, Wu X, et al. 2018. Multi-frequency laboratory measurement of rock physics property on sandstone. Progress in Geophysics (in Chinese), 33(4):1609-1616, doi:10.6038/pg2018BB0350.

     

    Zhou G F, Gong S T. 2020. Diagenesis and physical property evolution of tight glutenite reservoir in fault basin:taking Shahezi Formation in Xujiaweizi Fault Depression of Songliao Basin as an example. Journal of Xi'an Shiyou University (Natural Science Edition) (in Chinese), 35(1):34-41, doi:10.3969/j.issn.1673-064X.2020.01.005.

     

    Zhu N, Cao Y C, Xi K L, et al. 2019. Diagenesis and physical properties evolution of sandy conglomerate reservoirs:A case study of Triassic Baikouquan formation in northern slope zone of Mahu depression. Journal of China University of Mining & Technology (in Chinese), 48(5):1102-1118, doi:10.13247/j.cnki.jcumt.001019.

     

    蔡勋育, 刘金连, 赵培荣等. 2020.中国石化油气勘探进展与上游业务发展战略.中国石油勘探, 25(1):11-19, doi:10.3969/j.issn.1672-7703.2020.01.002.

     

    曹晓初, 常少英, 李立胜等. 2019.碳酸盐岩孔洞储层地震岩石物理建模及应用.地球物理学进展, 34(6):2239-2246, doi:10.6038/pg2019CC0389.

     

    戴金星, 倪云燕, 吴小奇. 2012.中国致密砂岩气及在勘探开发上的重要意义.石油勘探与开发, 39(3):257-264. http://qikan.cqvip.com/Qikan/Article/Detail?id=41909804

     

    邓继新, 唐郑元, 李越等. 2018.成岩过程对五峰-龙马溪组页岩地震岩石物理特征的影响.地球物理学报, 61(2):659-672, doi:10.6038/cjg2018L0062. http://www.geophy.cn/CN/abstract/abstract14364.shtml

     

    况晏, 司马立强, 瞿建华等. 2017.致密砂砾岩储层孔隙结构影响因素及定量评价——以玛湖凹陷玛131井区三叠系百口泉组为例.岩性油气藏, 29(4):91-100, doi:10.3969/j.issn.1673-8926.2017.04.011.

     

    赖锦, 王贵文, 王书南等. 2013.碎屑岩储层成岩相研究现状及进展.地球科学进展, 28(1):39-50. http://www.cqvip.com/QK/94287X/201301/44577902.html

     

    李鹭光, 何海清, 范土芝等. 2020.中国石油油气勘探进展与上游业务发展战略.中国石油勘探, 25(1):1-10, doi:10.3969/j.issn.1672-7703.2020.01.001.

     

    林春明, 张霞, 周健等. 2011.鄂尔多斯盆地大牛地气田下石盒子组储层成岩作用特征.地球科学进展, 26(2):212-223. http://d.wanfangdata.com.cn/Periodical/dqkxjz201102009

     

    罗静兰, 刘新社, 付晓燕等. 2014.岩石学组成及其成岩演化过程对致密砂岩储集质量与产能的影响:以鄂尔多斯盆地上古生界盒8天然气储层为例.地球科学-中国地质大学学报, 39(5):537-545, doi:10.3799/dqkx.2014.051.

     

    罗静兰, 魏新善, 姚泾利等. 2010.物源与沉积相对鄂尔多斯盆地北部上古生界天然气优质储层的控制.地质通报, 29(6):811-820. http://www.cqvip.com/Main/Detail.aspx?id=34287516

     

    唐大海, 谭秀成, 涂罗乐等. 2020.川中-川西过渡带沙溪庙组第二段致密砂岩储层物性控制因素及孔隙演化.成都理工大学学报(自然科学版), 47(4):460-471, doi:10.3969/j.issn.1671-9727.2020.04.08.

     

    田志, 肖立志, 廖广志等. 2019.基于沉积过程的数字岩石建模方法研究.地球物理学报, 62(1):248-259, doi:10.6038/cjg2019L0457.

     

    王大兴. 2016.致密砂岩气储层的岩石物理模型研究.地球物理学报, 59(12):4603-4622, doi:10.6038/cjg20161222. http://www.geophy.cn/CN/abstract/abstract13307.shtml

     

    王瑞飞, 王立新, 李俊鹿等. 2020.浅层致密砂岩油藏成岩作用及孔隙演化.地球物理学进展, 35(4):1465-1470, doi:10.6038/pg2020CC0416.

     

    谢继容, 唐大海, 陈洪斌等. 2004.川中公山庙油田沙一段油藏储层特征研究.成都理工大学学报(自然科学版), 31(4):368-374. http://www.cnki.com.cn/Article/CJFD2004-CDLG200404007.htm

     

    邢文军, 吴开龙, 吴鑫等. 2018.储层砂岩宽频段地震岩石物理特征的实验研究.地球物理学进展, 33(4):1609-1616, doi:10.6038/pg2018BB0350.

     

    周国锋, 龚松涛. 2020.断陷湖盆致密砂砾岩储层成岩作用与物性演化——以松辽盆地徐家围子断陷为例.西安石油大学学报(自然科学版), 35(1):34-41, doi:10.3969/j.issn.1673-064X.2020.01.005.

     

    朱宁, 操应长, 葸克来等. 2019.砂砾岩储层成岩作用与物性演化——以玛湖凹陷北斜坡区三叠系百口泉组为例.中国矿业大学学报, 48(5):1102-1118, doi:10.13247/j.cnki.jcumt.001019.

  • 加载中

(13)

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2020-09-05
修回日期:  2020-11-06
上线日期:  2020-12-05

目录