首页 | 本学科首页   官方微博 | 高级检索  
     

活性MgO−粉煤灰固化淤泥耐久性研究
引用本文:王东星,王宏伟,邹维列,徐学勇. 活性MgO−粉煤灰固化淤泥耐久性研究[J]. 岩土力学, 2019, 40(12): 4675-4684. DOI: 10.16285/j.rsm.2018.1844
作者姓名:王东星  王宏伟  邹维列  徐学勇
作者单位:1. 武汉大学 土木建筑工程学院 岩土与结构工程安全湖北省重点实验室,湖北 武汉 430072;2. 中国电建集团中南勘测设计研究院有限公司水能资源利用关键技术湖南省省重点实验室,湖南 长沙 410014;3. 大成科创基础建设股份有限公司,湖北 武汉 430021
基金项目:国家自然科学基金(No.51879202,No.51609180);武汉市科技计划项目(No.2018060402011257);水能资源利用关键技术湖南省省重点实验室开放研究基金(No.PKLHD201701)。
摘    要:将绿色环保活性MgO?粉煤灰材料引入淤泥固化,采用系列室内模拟试验,深入研究冻融、浸水和干湿等复杂气候环境下活性MgO?粉煤灰固化淤泥试样的外观形貌和强度特征,明确外界环境干扰诱使固化淤泥性能演化的内在规律。结果表明:活性MgO?粉煤灰固化淤泥具有良好的抗冻融、抗干湿及水稳性,且活性MgO?粉煤灰掺量及MgO/粉煤灰配比提高可进一步改善活性MgO?粉煤灰固化淤泥试样的耐久性能。冻融、浸水和干湿等复杂环境显著劣化固化淤泥抗压强度,其强度水平均低于同龄期标准养护试样。固化淤泥试样无侧限抗压强度随冻融循环次数增加而逐渐降低,随浸水时间增加先降低后趋于稳定,随干湿循环次数增加呈降低的趋势。基于所得试验结果,提出了活性MgO?粉煤灰固化淤泥耐久性演变的内在微观机制模型。

关 键 词:淤泥  活性MgO?粉煤灰  固化  抗压强度  耐久性  
收稿时间:2018-10-08

Study of durability of dredged sludge solidified with reactive MgO-fly ash
WANG Dong-xing,WANG Hong-wei,ZOU Wei-lie,XU Xue-yong. Study of durability of dredged sludge solidified with reactive MgO-fly ash[J]. Rock and Soil Mechanics, 2019, 40(12): 4675-4684. DOI: 10.16285/j.rsm.2018.1844
Authors:WANG Dong-xing  WANG Hong-wei  ZOU Wei-lie  XU Xue-yong
Affiliation:1. Hubei Key Laboratory of Safety for Geotechnical and Structural Engineering, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China; 2. Hunan Provincial Key Laboratory of Hydropower Development Key Technology, Zhongnan Engineering Corporation Limited, Power China, Changsha, Hunan 410014, China; 3. Dacheng Kechuang Foundation Construction Co., Ltd., Wuhan, Hubei 430021, China
Abstract:Based on series of laboratory tests including cyclic freeze-thaw, water immersion and cyclic drying-wetting, an experimental study has been performed to analyze the intrinsic change in the compressive strength and appearance of dredged sludge solidified with reactive MgO-fly ash, a green and environmental-friendly binder, and clarify the climate change-induced durability evolution. The test results indicate that the dredged sludge solidified with reactive MgO-fly ash has outstanding performance in resisting the damage from cyclic freeze-thaw, water immersion and cyclic drying-wetting. The durability performance of reactive MgO-fly ash solidified sludge is significantly enhanced as the MgO-fly ash content and mass ratio of MgO to fly ash increase. The strength behavior of MgO-fly ash solidified sludge is largely weakened by water immersion, cyclic dry-wet and cyclic freeze-thaw, and this causes a smaller compressive strength than that of samples cured under standard condition. As the number of freeze-thaw cycle increases, the compressive strength tends to decrease gradually. The compressive strength of samples immersed in water is initially reduced, and then changes within a limited interval. The compressive strength of damaged samples decreases with the increasing drying-wetting cycles. Based on the test results, an intrinsic microscopic mechanism model is proposed for the durability evolution of dredged sludge solidified with reactive MgO-fly ash.
Keywords:sludge  reactive MgO-fly ash  solidification  compressive strength  durability  
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号