三维/三维构造下大地电磁相位张量数值模拟

王书明, 李德山, 胡浩. 三维/三维构造下大地电磁相位张量数值模拟[J]. 地球物理学报, 2013, 56(5): 1745-1752, doi: 10.6038/cjg20130532
引用本文: 王书明, 李德山, 胡浩. 三维/三维构造下大地电磁相位张量数值模拟[J]. 地球物理学报, 2013, 56(5): 1745-1752, doi: 10.6038/cjg20130532
WANG Shu-Ming, LI De-Shan, HU Hao. Numerical modeling of magnetotelluric phase tensor in the context of 3D/3D formation[J]. Chinese Journal of Geophysics (in Chinese), 2013, 56(5): 1745-1752, doi: 10.6038/cjg20130532
Citation: WANG Shu-Ming, LI De-Shan, HU Hao. Numerical modeling of magnetotelluric phase tensor in the context of 3D/3D formation[J]. Chinese Journal of Geophysics (in Chinese), 2013, 56(5): 1745-1752, doi: 10.6038/cjg20130532

三维/三维构造下大地电磁相位张量数值模拟

详细信息
    作者简介:

    王书明,男,1966年生,博士,教授,主要从事地球电磁法数据处理、正反演方法研究及应用.E-mail: smwang101@cug.edu.cn

  • 中图分类号: P631

Numerical modeling of magnetotelluric phase tensor in the context of 3D/3D formation

  • 当地表存在三维非均匀电导率分布时,区域大地电磁响应发生畸变. 以往对这种畸变研究多假设近地表为三维,区域构造为一维或二维. 对于更一般的三维/三维构造,为了分析并消除这种畸变影响,真实反映地下三维区域构造信息,本文实现了三维大地电磁相位张量积分方程数值算法,并研究在不同地质模型下相位张量响应. 结果表明,相位张量不仅可以反映一般三维构造信息,亦可有效反映复杂近地表构造下三维区域构造信息,而无须假设区域构造为一维或二维,证明相位张量具有较强抗近地表局部非均匀构造干扰能力,能够保持更为一般的三维区域构造信息. 为了加快正演计算,同时保持一定精度,算法采用了积分方程多网格法.
  • 加载中
  • [1]

    Jiracek G R. Near-surface and topographic distortions in electromagnetic induction. Surv. Geophys., 1990, 11(2-3): 163-203.

    [2]

    Bruton P. Analysis of broadband magnetotelluric data and an application to the Irish Variscides . Galway: National University of Ireland, 1994.

    [3]

    Smith J T. Understanding telluric distortion matrices. Geophys. J. Int., 1995, 122(1): 219-226.

    [4]

    魏胜, 王家映, 罗志琼. 全MT张量阻抗分解及其应用. // 应用地球物理学进展. 武汉: 中国地质大学出版社, 1998: 38-45. Wei S, Wang J Y, Luo Z Q. Full MT impedance tensor separation and its application. // Applied Geophysics Advance (in Chinese). Wuhan: China University of Geosciences Press, 1998: 38-45.

    [5]

    王书明. 表面局部三维大地电磁曲线畸变校正: MT畸变校正阻抗张量分解技术. 西北地震学报, 1998, 20(4): 1-11. Wang S M. The correction of magnetotelluric curve distortion caused by surficial local three-dimension inhomogeneities: the impedance tensor decomposition technique for the correction of MT curves distortion. Northwestern Seismological Journal (in Chinese), 1998, 20(4): 1-11.

    [6]

    晋光文, 孙洁, 王继军. 大地电磁(MT)阻抗张量的正则分解及其初步应用. 地震地质, 1998, 20(3): 243-249. Jin G W, Sun J, Wang J J. Canonical decomposition of the magnetotelluric (MT) impedance tensor and its preliminary application. Seismology and Geology (in Chinese), 1998, 20(3): 243-249.

    [7]

    赵国泽, 汤吉, 刘铁胜等. 山西阳高—河北容城剖面大地电磁资料的初步解释——阻抗张量分解技术及其应用. 地震地质, 1996, 18(1): 66-74. Zhao G Z, Tang J, Liu T S, et al. Preliminary interpretation of MT data along profile from Yanggao to Rongcheng: application of decomposition of MT impedance tensor. Seismology and Geology (in Chinese), 1996, 18(1): 66-74.

    [8]

    Ritter P. Separation of local and regional information in geomagnetic response functions using hypothetical event analysis . Edinburgh: University of Edinburgh, 1996.

    [9]

    McNeice G W, Jones A G. Multisite, multifrequency tensor decomposition of magnetotelluric data. Geophysics, 2001, 66(1): 158-173.

    [10]

    晋光文, 孔祥儒. 大地电磁阻抗张量的畸变与分解. 北京: 地震出版社, 2006. Jin G W, Kong X R. MT Impedance Distortion and Separation (in Chinese). Beijing: Seismological Press, 2006.

    [11]

    李洋, 于鹏, 张罗磊等. 基于混合优化算法的MT阻抗张量畸变分解方法. 地球物理学报, 2010, 53(8): 1924-1930. Li Y, Yu P, Zhang L L, et al. MT distortion decomposition of magnetotelluric impedance tensor based on hybrid optimization algorithm. Chinese J. Geophys. (in Chinese), 2010, 53(8): 1924-1930.

    [12]

    蔡军涛, 陈小斌, 赵国泽. 大地电磁资料精细处理和二维反演解释技术研究(一)——阻抗张量分解与构造维性分析. 地球物理学报, 2010, 53(10): 2516-2526. Cai J T, Chen X B, Zhao G Z. Refined techniques for data processing and two-dimensional inversion in magnetotelluricⅠ: tensor decomposition and dimensionality analysis. Chinese J. Geophys. (in Chinese), 2010, 53(10): 2516-2526.

    [13]

    杨长福, 林长佑, 徐世浙. 大地电磁GB张量分解法的改进. 地球物理学报, 2002, 45(增刊): 356-364. Yang C F, Lin C Y, Xu S Z. The improvement of the Groom-Baily's tensor decomposition in magnetotellurics. Chinese J. Geophys. (in Chinese), 2002, 45(Suppl.): 356-364.

    [14]

    王立凤, 晋光文, 孙洁等. 一种简单的大地电磁阻抗张量畸变分解方法. 西北地震学报, 2001, 23(2): 172-180. Wang L F, Jin G W, Sun J, et al. A simple decomposition method of distortion in magnetotelluric impedance tensor. Northwestern Seismological Journal (in Chinese), 2001, 23(2): 172-180.

    [15]

    Berdichevsky M N, Dmitriev V L, Keller G V. Magnetotellurics in the Context of the Theory of Ill-Posed Problems. Frank: Society of Exploration Geophysicists, 2002.

    [16]

    Berdichevsky M N, Dmitriev V I. Models and Methods of Magnetotellurics. Berlin: Springer-Verlag, 2008.

    [17]

    陈乐寿, 刘任, 王天生. 大地电磁测深资料处理与解释. 北京: 石油工业出版社, 1989. Chen L S, Liu R, Wang T S. Magnetotelluric Data Processing and Interpretation (in Chinese). Beijing: Oil Industry Press, 1989.

    [18]

    陈乐寿, 王光锷. 大地电磁测深法. 北京: 地质出版社, 1990. Chen L S, Wang G E. Magnetotelluric Sounding (in Chinese). Beijing: Geological Publishing House, 1990.

    [19]

    Caldwell T G, Bibby H M, Brown C. The magnetotelluric phase tensor. Geophys. J. Int., 2004, 158(2): 457-469.

    [20]

    Weidelt P. Inversion of two-dimensional conductivity structures. Physics of the Earth and Planetary Interiors, 1975, 10(3): 282-291.

    [21]

    Homann G W. Three-dimensional induced polarization and electromagnetic modeling. Geophysics, 1975, 40(2): 301-324.

    [22]

    Born M. Optics. Berlin: Springer, 1933.

    [23]

    Born M, Wolf E. Principles of Optics. 6th ed. New York: Pergamon Press, 1980.

    [24]

    Habasy T M, Groom R W, Spies B R. Beyond the Born and Rytov approximations: a nonlinear approach to electromagnetic scattering. J. Geophys. Res., 1993, 98(B2): 1759-1775.

    [25]

    Zhdanov M S, Fang S. Quasi-linear approximation in 3-D electromagnetic modeling. Geophysics, 1996, 61(3): 646-665.

    [26]

    Zhdanov M S. Geophysical Inverse Theory and Regularization Problems. Amsterdam: Elsevier, 2002.

    [27]

    Fang S, Atlas B, Gao G Z, et al. Fast 3D modeling of borehole induction measurements in dipping and anisotropic formations using a novel approximation technique. Petrophysics, 2004, 45(4): 335-349.

  • 加载中
计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2011-12-21
修回日期:  2012-11-23
上线日期:  2013-05-20

目录