首页 | 本学科首页   官方微博 | 高级检索  
     

缓坡方程的有限元解法及应用
引用本文:郑俊,李瑞杰,江森汇,罗锋. 缓坡方程的有限元解法及应用[J]. 水科学进展, 2009, 20(2): 275-280
作者姓名:郑俊  李瑞杰  江森汇  罗锋
作者单位:海岸灾害及防护教育部重点实验室,江苏,南京,210098;海岸灾害及防护教育部重点实验室,江苏,南京,210098;河海大学物理海洋研究所,江苏,南京,210098;河海大学物理海洋研究所,江苏,南京,210098
基金项目:教育部高等学校博士学科点专项科研基金 
摘    要:利用有限元方法离散椭圆型缓坡方程,能适用于复杂区域,并很好地拟合不规则边界;采用改进共轭梯度法求解离散方程组,可以大大降低计算内存要求,提高计算效率。利用结合上述两种方法的模式对规划的日照港区水域进行了波浪数值计算,并将计算结果与物理模型试验值进行比较,结果表明:该模式能适用于较大区域的波浪场计算,并可以得到较好的计算结果。

关 键 词:波浪  数值计算  缓坡方程  有限元法
收稿时间:2007-12-12

Finite element solution for mild-slope equation and its application
ZHENG Jun,LI Rui-jie,JIANG Sen-hui,LUO Feng. Finite element solution for mild-slope equation and its application[J]. Advances in Water Science, 2009, 20(2): 275-280
Authors:ZHENG Jun  LI Rui-jie  JIANG Sen-hui  LUO Feng
Affiliation:1.Key Laboratory of Coastal Disaster and Defence, Ministry of Education, Nanjing 210098, China;2.Institute of Physical Oceanography, Hohai university, Nanjing 210098, China
Abstract:The finite element method,which suits complex domain shapes well andfits the irregular boundary conveniently,is used to salve the elliptic mild slope equation in the model of this paper.And the modified conjugate-gradient method,which solves the linear system of equations efficiently and requires less memory,is used to solve the linear system of the mild slope equation.This model is tested with the laboratory measurements of Rizhao Port waters.The results show that the model could be used in relative large region and get ideal results.
Keywords:
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《水科学进展》浏览原始摘要信息
点击此处可从《水科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号