首页 | 本学科首页   官方微博 | 高级检索  
     

基于投影寻踪学习网络算法的植物群落高分遥感分类研究
引用本文:杜欣,黄晓霞,李红旮,沈利强. 基于投影寻踪学习网络算法的植物群落高分遥感分类研究[J]. 地球信息科学学报, 2016, 18(1): 124-132. DOI: 10.3724/SP.J.1047.2016.00124
作者姓名:杜欣  黄晓霞  李红旮  沈利强
作者单位:1. 中国科学院遥感与数字地球研究所,北京 1001012. 深圳规划国土发展研究中心,深圳 518040
基金项目:深圳市基本生态控制线专项调查;深圳市2012年测绘地籍工程计划项目([2012]0365)
摘    要:传统的植物群落调查方法主要是野外样地调查和抽样统计,其对于地形复杂的区域难以做到对数据的全面调查;将遥感技术应用于植物群落调查,可实现数据的全面获取,以及对植物群落的快速分类。在深圳市植物群落野外样地调查的基础上,本文应用高分辨率Pléiades影像,结合光谱、地形及纹理信息,采用投影寻踪学习网络的方法,实现了深圳市东部地区植物分类。在实验中,选取人工林和次生林中典型群落样本,将投影寻踪与学习网络算法结合应用于植被分类,通过分类结果与经典监督分类方法比较表明,该算法应用于植物群落分类是可行的;并且该算法分类精度高,更新速度快,能满足深圳市重点项目基本生态控制线专项调查的要求。

关 键 词:投影寻踪  学习网络  高分辨率遥感影像  植物群落分类  
收稿时间:2015-01-16

Research on Classification of Plant Community Using Projection Pursuit Learning Network Algorithm on High Resolution Remote Sensing Images
DU Xin,HUANG Xiaoxia,LI Hongga,SHEN Liqiang. Research on Classification of Plant Community Using Projection Pursuit Learning Network Algorithm on High Resolution Remote Sensing Images[J]. Geo-information Science, 2016, 18(1): 124-132. DOI: 10.3724/SP.J.1047.2016.00124
Authors:DU Xin  HUANG Xiaoxia  LI Hongga  SHEN Liqiang
Affiliation:1. Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing 100101, China2. Planning and Land Development Research Center of Shenzhen Shenzhen 518040, China
Abstract:Plant community is a significant content in the ecosystem. Traditional investigation method for plant community is mainly based on statistical sampling, which is limited by the data acquisition from complex terrain areas. In contrast, high-resolution remote sensing technique provides a convenient way to quickly access data in a large area. To overcome the shortcomings derived from the high dimensional features, which is caused by related data increasing, we choose the algorithm of projection pursuit learning network (PPLN) along with field samples of typical plant communities to realize a fast classification on the vegetation in the east of Shenzhen. Then,in the experiment, the spectral and texture information extracted from Pléiades images, and the terrain interpolated from topographic map are selected and used to build high dimensional features, which is crucial to the vegetation classification using remote sensing images. The learning network for projection pursuit is applied to discriminating the typical communities in both plantation and natural secondary forest in the study area. Compared with Maximum-likelihood classification (MLC) and Support Vector Machine (SVM), PPLN can achieve more accurate results for plant community classification. As a conclusion, the plant community classification with PPLN meets the requirements of the investigation project, achieves the quick updating of some basic information related to forest resources, and looks forward to involve in some other ecological research as well.
Keywords:projection pursuit  learning network  high resolution remote sensing  plant community classification  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《地球信息科学学报》浏览原始摘要信息
点击此处可从《地球信息科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号