中亚干旱区咸海面积变化与人类活动及气候变化的关联研究

杨雪雯, 王宁练, 陈安安, 张伟

冰川冻土 ›› 2020, Vol. 42 ›› Issue (2) : 681-692.

PDF(6055 KB)
PDF(6055 KB)
冰川冻土 ›› 2020, Vol. 42 ›› Issue (2) : 681-692. DOI: 10.7522/j.issn.1000-0240.2019.0902  CSTR: 32264.14.j.issn.1000-0240.2019.0902
冰冻圈与可持续发展

中亚干旱区咸海面积变化与人类活动及气候变化的关联研究

作者信息 +

The relationship between area variation of the Aral Sea in the arid Central Asia and human activities and climate change

Author information +
文章历史 +

本文亮点

咸海是亚洲仅次于里海的第二大内陆咸水湖, 20世纪60年代以来湖泊面积急剧萎缩。基于1960 - 2018年咸海的面积数据、 CRU气温和降水数据以及咸海流域灌溉面积、 水库容量等资料, 定量分析了1960年以来咸海湖泊面积的变化情况, 并从气候变化与人类活动两方面探究了咸海面积变化的主要影响因素。结果表明: 1960 - 2018年咸海的面积由6.85×104 km2持续萎缩至(8.32±0.19)×103 km2, 共减少了(6.02±0.02)×104 km2(约87.85%), 其中1960 - 2009年面积萎缩了(5.94±0.02)×104 km2(约86.77%), 而在2009 - 2018年其面积萎缩速率明显放缓, 减少了740.04 km2(约8.17%)。统计结果显示, 1960年以来强烈的人类活动(主要表现为灌溉用水和水库储水量的持续增加)是导致咸海面积急剧萎缩的主要因素, 其对咸海面积变化的影响远大于气候变化。在中亚地区气候继续向暖湿变化的背景下, 咸海流域应尽快调整以农业灌溉为主的用水结构, 否则在上游冰川融水达到峰值后, 咸海可能面临干涸的危险。

HeighLight

Utilizing datasets of the Aral Sea area, global CRU meteorological data and the irrigation area and reservoir capacity, we quantitatively assessed the long-term area variation of the Aral Sea during the period of 1960 - 2018, and then investigated the dominant influence factors including climate change and human activities. It is revealed that area of the Aral Sea had shrunk dramatically from 6.85×104 km2 to (8.32±0.19)×103 km2 with a shrinkage of (6.02±0.02)×104 km2 (about 87.85%) from 1960 to 2018. The area of the Aral Sea had shrunk by (5.94±0.02)×104 km2 (about 86.77%) during the period of 1960 - 2009, while the shrinkage rate had slowed down obviously and the area had decreased by 740.04 km2 (about 8.17%) during the period of 2009 - 2018. The results of this statistical analysis show that the enhanced human activities since 1960, especially the increase of irrigation water consumption and reservoir capacity, is the dominant factor rendering the rapid shrinkage of the Aral Sea. Hence, water consumption, especially for irrigation should be adjusted to adapt on-going warming in the Aral Sea basin as soon as possible.

引用本文

导出引用
杨雪雯, 王宁练, 陈安安, 张伟. 中亚干旱区咸海面积变化与人类活动及气候变化的关联研究[J]. 冰川冻土, 2020, 42(2): 681-692 https://doi.org/10.7522/j.issn.1000-0240.2019.0902
YANG Xuewen, WANG Ninglian, CHEN An’an, ZHANG Wei. The relationship between area variation of the Aral Sea in the arid Central Asia and human activities and climate change[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 681-692 https://doi.org/10.7522/j.issn.1000-0240.2019.0902
中图分类号: P343.3   

参考文献

1
Huang Qiuxia Zhao Yong He Qing. Climatic characteristics in Central Asia based on CRU data[J]. Arid Zone Research201330(3): 396 - 403.
黄秋霞, 赵勇, 何清. 基于CRU资料的中亚地区气候特征[J]. 干旱区研究201330(3): 396 - 403.
2
Chen Xi. Changes in land use and land cover of the arid China[M]. Beijing: Science Press, 2008.
陈曦. 中国干旱区土地利用与土地覆被变化[M]. 北京: 科学出版社, 2008.
3
Becker F Li Z L. Towards a local split window method over land surfaces[J]. International Journal of Remote Sensing199011(3): 369 - 393.
4
Wei Shanrong Jin Xiaomei Wang Kailin, et al. Response of lake area variation to climate change in Qaidam Basin based on remote sensing[J]. Earth Science Frontiers201724(5): 427 - 433.
魏善蓉, 金晓媚, 王凯霖, 等. 基于遥感的柴达木盆地湖泊面积变化与气候响应分析[J]. 地学前缘201724(5): 427 - 433.
5
Ma Ronghua Yang Guishan Duan Hongtao, et al. China’s lakes at present: number, area and spatial distribution[J]. Science China: Earth Sciences201154(2): 283 - 289.
马荣华, 杨桂山, 段洪涛, 等. 中国湖泊的数量、 面积与空间分布[J]. 中国科学: 地球科学201141(3): 394 - 401.
6
Shi Yafeng. Glacier recession and lake shrinkage indicating a climatic warming and drying trend in Central Asia[J]. Acta Geographica Sinica199045(1): 1 - 13.
施雅风. 山地冰川与湖泊萎缩所指示的亚洲中部气候干暖化趋势与未来展望[J]. 地理学报199045(1): 1 - 13.
7
Mason I M Guzkowska M A J Rapley C G, et al. The response of lake levels and areas to climate change[J]. Climate Change199427(2): 161 - 197.
8
Li Yu Morrill C. Multiple factors causing Holocene lake-level change in monsoonal and arid Central Asia as identified by model experiments[J]. Climate Dynamics201035(6): 1115 - 1128.
9
Yao Junqiang Yang Qing Mao Weiyi, et al. Evaluation of the impacts of climate change and human activities on the hydrological environment in Central Asia[J]. Journal of Glaciology and Geocryology201638(1): 222 - 230.
姚俊强, 杨青, 毛炜峄, 等. 气候变化和人类活动对中亚地区水文环境的影响评估[J]. 冰川冻土201638(1): 222 - 230.
10
Deng Mingjiang Long Aihua Zhang Yi, et al. Assessment of water resources development and utilization in the five Central Asia countries[J]. Advances in Earth Science201025(12): 1347 - 1356.
邓铭江, 龙爱华, 章毅, 等. 中亚五国水资源及其开发利用评价[J]. 地球科学进展201025(12): 1347 - 1356.
11
Igor V S. Water-related problems of Central Asia: some results of the (GIWA) international water assessment program[J]. AMBIO: A Journal of the Human Environment200433(1): 52 - 62.
12
Bai Jie Chen Xi Li Junli, et al. Changes of inland lake area in arid Central Asia during 1975 - 2007: a remote-sensing analysis[J]. Journal of Lake Sciences201123(1): 80 - 88.
白洁, 陈曦, 李均力, 等. 1975 - 2007年中亚干旱区内陆湖泊面积变化遥感分析[J]. 湖泊科学201123(1): 80 - 88.
13
Meng Kai Shi Xuhua Wang Erqi, et al. High-altitude salt lake elevation changes and glacial ablation in central Tibet, 2000 - 2010[J]. Chinese Science Bulletin201257(5): 525 - 534.
孟恺, 石许华, 王二七, 等. 青藏高原中部色林错湖近10年来湖面急剧上涨与冰川消融[J]. 科学通报201257(7): 571 - 579.
14
Zhang Guoqing Yao Tandong Shum C K, et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin: water mass balance in the TP[J]. Geophysical Research Letters201744(11): 5550 - 5560.
15
Song Chunqiao Sheng Yongwei. Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the Tanggula Mountains and climate cause analysis[J]. Climatic Change2016135(3/4): 493 - 507.
16
Li Da Shangguan Donghui Huang Weidong. Study on the area change of Lake Merzbacher in the Tianshan Mountains during 1998 - 2017[J/OL]. Journal of Glaciology and Geocryology201941(1) [2019-11-08].
李达, 上官冬辉, 黄维东. 天山麦兹巴赫冰川湖1998 - 2017年面积变化相关研究[J/OL]. 冰川冻土201941(1) [2019-11-08].
17
Yan Zhengxin Guo Wanqin. Remote sensing monitoring of the lake area of Issyk-Kul Lake in Central Asia from 1991 to 2014[J]. Geomatics and Spatial Information Technology201841(2): 142 - 146.
闫政新, 郭万钦. 1991 - 2014年中亚伊塞克湖湖泊面积变化遥感监测[J]. 测绘与空间地理信息201841(2): 142 - 146.
18
Yuan Guoying Yuan Lei. An approach to the environmental changes in Lop-Nur history[J]. Acta Geographica Sinica199853(): 83 - 89.
摘要
Suppl 1
袁国映, 袁磊. 罗布泊历史环境变化探讨[J]. 地理学报199853(): 83 - 89.
增刊1
19
Deng Mingjiang Long Aihua. Evolution of hydrologic and water resources and ecological crisis in the Aral Sea basin[J]. Journal of Glaciology and Geocryology201133(6): 1363 - 1375.
邓铭江, 龙爱华. 咸海流域水文水资源演变与咸海生态危机出路分析[J]. 冰川冻土201133(6): 1363 - 1375.
20
Deng Mingjiang Long Aihua. Water resources issue among the Central Asian countries around the Aral Sea: conflict and cooperation[J]. Journal of Glaciology and Geocryology201133(6): 1376 - 1390.
邓铭江, 龙爱华. 中亚各国在咸海流域水资源问题上的冲突与合作[J]. 冰川冻土201133(6): 1376 - 1390.
21
Wu Jinglu Ma Long Ji Lili, et al. Lake surface change of the Aral Sea and its environmental effects in the arid region of the Central Asia[J]. Arid Land Geography200932(3): 418 - 422.
吴敬禄, 马龙, 吉力力, 等. 中亚干旱区咸海的湖面变化及其环境效应[J]. 干旱区地理200932(3): 418 - 422.
22
Wurtsbaugh W A Miller C Null S E, et al. Decline of the world’s saline lakes[J]. Nature Geoscience201710: 816 - 821.
23
Singh A Seitz F Schwatke C. Inter-annual water storage changes in the Aral Sea from multi-mission satellite altimetry, optical remote sensing, and GRACE satellite gravimetry[J]. Remote Sensing of Environment2012123(4): 187 - 195.
24
Stanev E V Peneva E L Mercier F. Temporal and spatial patterns of sea level in inland basins: recent events in the Aral Sea[J/OL]. Geophysical Research Letters200431(15) [2019-11-08].
25
Cretaux J F Letolle R Bergé-Nguyen M. History of Aral Sea level variability and current scientific debates[J]. Global and Planetary Change2013110: 99 - 113.
26
Barale V Gade M. Remote sensing of the Asian seas[M]. Berlin: Springer, 2019.
27
Long Aihua Deng Mingjiang Xie Lei, et al. Exploring analysis on the adaptive countermeasures to water resources evolvement under the climate change in Xinjiang and Aral Sea basin[J]. Arid Land Geography201235(3): 377 - 387.
龙爱华, 邓铭江, 谢蕾, 等. 气候变化下新疆及咸海流域河川径流演变及适应性对策分析[J]. 干旱区地理201235(3): 377 - 387.
28
Jin Qinjian Wei Jiangfeng Yang Zongliang, et al. Irrigation-induced environmental changes around the Aral Sea: an integrated view from multiple satellite observations[J/OL]. Remote Sensing20179 [2019-11-08].
29
Micklin P Aladin N V Plotnikov I. The Aral Sea[M]. Berlin: Springer, 2014.
30
Nezlin N P Kostianoy A G Lebedev S A. Interannual variations of the discharge of Amu Darya and Syr Darya estimated from global atmospheric precipitation[J]. Journal of Marine Systems200447(1/2/3/4): 67 - 75.
31
Defries R S Townshend J R G. NDVI-derived land cover classifications at a global scale[J]. International Journal of Remote Sensing199415(17): 3567 - 3586.
32
Wen Xinyu Wang Shaowu Zhu Jinhong, et al. An overview of China climate change over the 20th century using UK UEA/CRU high resolution grid data[J]. Chinese Journal of Atmospheric Sciences200630(5): 894 - 904.
闻新宇, 王绍武, 朱锦红, 等. 英国CRU高分辨率格点资料揭示的20世纪中国气候变化[J]. 大气科学200630(5): 894 - 904.
33
Wang Jinsong Chen Fahu Zhang Qiang, et al. Temperature variations in arid and semi-arid areas in middle part of Asia during the last 100 years[J]. Plateau Meteorology200827(5): 1035 - 1045.
王劲松, 陈发虎, 张强, 等. 亚洲中部干旱半干旱区近100年来的气温变化研究[J]. 高原气象200827(5): 1035 - 1045.
34
Pfeffer W T Arendt A A Bliss A, et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers[J]. Journal of Glaciology201460(221): 537 - 552.
35
Zhang Danwu Cong Zhentao Ni Guangheng. Comparison of three Mann-Kendall methods based on the China’s meteorological data[J]. Advances in Water Science201324(4): 490 - 496.
章诞武, 丛振涛, 倪广恒. 基于中国气象资料的趋势检验方法对比分析[J]. 水科学进展201324(4): 490 - 496.
36
Chen An’an. Glacier mass budgets in the High Mountain Asia based on multi-source DEMs over past 50 years[D]. Lanzhou: Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 2017.
陈安安. 基于多源DEM的近50年高亚洲地区冰川物质平衡研究[D]. 兰州: 中国科学院西北生态环境资源研究院, 2017.
37
Zhou Yushan Li Zhiwei Li Jia, et al. Geodetic glacier mass balance (1975 - 1999) in the central Pamir using the SRTM DEM and KH-9 imagery[J]. Journal of Glaciology201965(250): 309 - 320.
38
Fanny B Etienne B Patrick W, et al. Author correction: a spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016[J]. Nature Geoscience201811(7): 542 - 544.
39
Saiko T A Zonn I S. Irrigation expansion and dynamics of desertification in the circum-Aral region of Central Asia[J]. Applied Geography200020(4): 349 - 367.
40
Shi Yafeng. Estimation of the water resources affected by climatic warming and glacier shrinkage before 2050 in west China[J]. Journal of Glaciology and Geocryology200123(4): 333 - 341.
施雅风. 2050年前气候变暖冰川萎缩对水资源影响情景预估[J]. 冰川冻土200123(4): 333 - 341.
41
Huss M Hock R. Global-scale hydrological response to future glacier mass loss[J]. Nature Climate Change20188: 135 - 140.

基金

中国科学院战略性先导科技专项(A类)(XDA20060201)
中国科学院“一带一路”科技合作专项(131C11KYSB20160061)
国家自然科学基金项目(41971083)
第二次青藏高原综合科学考察研究专项(2019QZKK020102)
PDF(6055 KB)

Accesses

Citation

Detail

段落导航
相关文章

/