基于生成对抗网络的塔里木深层超深层叠前地震子波提取

韩浩宇, 戴永寿, 宋建国, 万勇, 孙伟峰, 李泓浩. 2022. 基于生成对抗网络的塔里木深层超深层叠前地震子波提取. 地球物理学报, 65(2): 763-772, doi: 10.6038/cjg2022P0130
引用本文: 韩浩宇, 戴永寿, 宋建国, 万勇, 孙伟峰, 李泓浩. 2022. 基于生成对抗网络的塔里木深层超深层叠前地震子波提取. 地球物理学报, 65(2): 763-772, doi: 10.6038/cjg2022P0130
HAN HaoYu, DAI YongShou, SONG JianGuo, WAN Yong, SUN WeiFeng, LI HongHao. 2022. Deep prestack seismic wavelets extraction in Tarim based on generative adversarial network. Chinese Journal of Geophysics (in Chinese), 65(2): 763-772, doi: 10.6038/cjg2022P0130
Citation: HAN HaoYu, DAI YongShou, SONG JianGuo, WAN Yong, SUN WeiFeng, LI HongHao. 2022. Deep prestack seismic wavelets extraction in Tarim based on generative adversarial network. Chinese Journal of Geophysics (in Chinese), 65(2): 763-772, doi: 10.6038/cjg2022P0130

基于生成对抗网络的塔里木深层超深层叠前地震子波提取

  • 基金项目:

    国家自然科学基金(41974144),中央高校基本科研业务费专项资金(20CX05003A)和中国石油天然气股份有限公司重大科技项目(ZD2019-183-003)联合资助

详细信息
    作者简介:

    韩浩宇, 男, 1997年生, 硕士研究生, 主要从事地震勘探信号处理方面的研究.E-mail: hanhaoyude2014@163.com

    通讯作者: 戴永寿, 男, 1963年生, 博士, 教授, 主要从事地震勘探信号处理方面的研究.E-mail: daiys@upc.edu.cn
  • 中图分类号: P631

Deep prestack seismic wavelets extraction in Tarim based on generative adversarial network

More Information
  • 深层超深层叠前地震子波的准确提取可有效提高全波形反演及叠前偏移成像等方法的准确性,对储层预测和油气分析具有重要意义.针对塔里木低信噪比叠前地震记录,本文提出一种基于生成对抗网络(GAN)的塔里木深层超深层叠前地震子波提取方法.结合柯东地区地质构造特点及噪声特性,采用有限差分法正演叠前地震记录,构建了塔里木柯东地区叠前地震记录及对应子波的训练样本集,利用地震子波、反射系数及噪声特征的区别训练生成对抗网络,实现了从叠前地震记录中有效分离地震子波.合成数据和实际地震资料处理结果表明,本文所提方法对塔里木深层超深层叠前地震子波提取具有有效性和较高的准确性,较传统方法更具优越性.

  • 加载中
  • 图 1 

    基于GAN算法的子波提取处理流程图

    Figure 1. 

    Wavelet extraction processing flow chart based on GAN

    图 2 

    生成对抗网络结构图

    Figure 2. 

    Generative Adversarial Networks structure diagram

    图 3 

    生成对抗网络的学习过程图

    Figure 3. 

    Diagram of the learning process of generating a confrontation network

    图 4 

    生成对抗网络的训练流程图

    Figure 4. 

    The training flowchart of the confrontation generation network

    图 5 

    叠前地震记录合成流程图

    Figure 5. 

    Flow chart of pre-stack seismic record synthesis

    图 6 

    正演合成叠前地震记录结果图

    Figure 6. 

    The result of forward synthetic pre-stack seismic record

    图 7 

    叠前地震子波提取结果对比

    Figure 7. 

    Comparison of pre-stack seismic wavelet extraction results

    图 8 

    不同方法子波提取误差对比

    Figure 8. 

    Wavelet extraction errors comparison of different methods

    图 9 

    叠前地震记录反褶积结果对比图

    Figure 9. 

    Comparison of deconvolution results of pre-stack seismic records

    表 1 

    传统谱模拟算法与生成对抗网络算法的叠前地震子波提取速度对比

    Table 1. 

    Comparison of pre-stack seismic wavelet extraction speed between traditional spectrum simulation algorithm and GAN

    子波提取方法 子波提取速度/(1000道·s-1)
    传统谱模拟算法 23088.22
    变分模态分解算法 39587.12
    生成对抗网络算法 1225.66
    下载: 导出CSV
  •  

    Chen D W, Yang W Y, Wei X J, et al. 2021. Research on first-break automatic picking based on an improved U-Net network. Progress in Geophysics (in Chinese), 36(4): 1493-1503, doi:10.6038/pg2021EE0235.

     

    Chen D Y, Gao J H, Hou Y P, et al. 2019. High resolution inversion of seismic wavelet and reflectivity using iterative deep neural networks. //89th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts, 2538-2542.

     

    Côrte G, Dramsch J, Amini H, et al. 2020. Deep neural network application for 4D seismic inversion to changes in pressure and saturation: Optimizing the use of synthetic training datasets. Geophysical Prospecting, 68(7): 2164-2185. doi: 10.1111/1365-2478.12982

     

    Das V, Pollack A, Wollner U, et al. 2018. Convolutional neural network for seismic impedance inversion. //88th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts, 869-880.

     

    Du Z L, Liang H, Shi J, et al. 2013. Cenozoic structural deformation and hydrocarbon exploration of Kedong structure in the piedmont of western Kunlun mountain. Acta Petrolei Sinica (in Chinese), 34(1): 23-29.

     

    Goodfellow I J, Pouget-Abadie J, Mirza M, et al. 2014. Generative adversarial nets. //Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2672-2680.

     

    Grubas S I, Loginov G N, Duchkov A A. 2020. Traveltime-table compression using artificial neural networks for Kirchhoff-migration processing of microseismic data. Geophysics, 85(5): U121-U128.

     

    Kaur H, Pham N, Fomel S. 2019. Seismic data interpolation using CycleGAN. //89th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts, 2202-2206.

     

    Kim Y, Nakata N. 2018. Geophysical inversion versus machine learning in inverse problems. The Leading Edge, 37(12): 894-901. doi: 10.1190/tle37120894.1

     

    Li Q X, Luo Y N. 2019. Using GAN priors for ultrahigh resolution seismic inversion. //89th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts, 2453-2457.

     

    Lin N T, Zhang D, Zhang K, et al. 2018. Predicting distribution of hydrocarbon reservoirs with seismic data based on learning of the small-sample convolution neural network. Chinese Journal of Geophysics (in Chinese), 61(10): 4110-4125, doi:10.6038/cjg2018J0775.

     

    Lü Y, Shan X C, Huo S D, et al. 2020. Local SNR estimation of seismic data based on deep convolutional neural network. Chinese Journal of Geophysics (in Chinese), 63(1): 320-328, doi:10.6038/cjg2020N0058.

     

    Mao W T, Liu Y M, Ding L, et al. 2019. Imbalanced fault diagnosis of rolling bearing based on generative adversarial network: a comparative study. IEEE Access, 7: 9519-9530.

     

    Nair V, Hinton G E. 2010. Rectified linear units improve restricted boltzmann machines. //Proceedings of the 27th International Conference on International Conference on Machine Learning. Madison: Omnipress, 807-814.

     

    Rosa A L R, Ulrych T J. 1991. Processing via spectral modeling. Geophysics, 56(8): 1244-1251. doi: 10.1190/1.1443144

     

    Siahkoohi A, Louboutin M, Kumar R, et al. 2018. Deep-Convolutional Neural Networks in prestack seismic-two exploratory examples. //88th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts, 2196-2200.

     

    Wang H, Yan J Y, Fu G M, et al. 2020. Current status and application prospect of deep learning in geophysics. Progress in Geophysics (in Chinese), 35(2): 642-655, doi:10.6038/pg2020CC0476.

     

    Wang L X, Mendel J M. 1991. Adaptive minimum prediction-error deconvolution and wavelet estimation using Hopfield neural networks. //1991 IEEE International Conference on Acoustics, Speech, and Signal Processing. Toronto, ON, Canada: IEEE, 2969-2972.

     

    Wang S X, Yuan S Y, Ma M, et al. 2015. Wavelet phase estimation using ant colony optimization algorithm. Journal of Applied Geophysics, 122: 159-166. doi: 10.1016/j.jappgeo.2015.09.013

     

    Wang W L, Ma J W. 2020. Velocity model building in acrosswell acquisition geometry with image-trained artificial neural networks. Geophysics, 85(2): U31-U46. doi: 10.1190/geo2018-0591.1

     

    Zeng C M, Du Z L, Zhou X H, et al. 2011. Structural Characteristics and Deformation Mechanism of Kedong Thrust Belt in Piedmont of Kunlun Mountain. Xinjiang Petroleum Geology (in Chinese), 32(2): 133-136.

     

    Zhang F C, Liu H Q, Niu X M, et al. 2014. High resolution seismic inversion by convolutional neural network. Oil Geophysical Prospecting (in Chinese), 49(6): 1165-1169.

     

    陈德武, 杨午阳, 魏新建等. 2021. 一种基于改进的U-Net网络的初至自动拾取研究. 地球物理学进展, 36(4): 1493-1503, doi:10.6038/pg2021EE0235.

     

    杜治利, 梁瀚, 师骏等. 2013. 西昆仑山前柯东构造新生代构造变形及油气意义. 石油学报, 34(1): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301002.htm

     

    林年添, 张栋, 张凯等. 2018. 地震油气储层的小样本卷积神经网络学习与预测. 地球物理学报, 61(10): 4110-4125, doi:10.6038/cjg2018J0775. http://www.geophy.cn/article/doi/10.6038/cjg2018J0775

     

    吕尧, 单小彩, 霍守东等. 2020. 基于深度卷积神经网络的地震数据局部信噪比估计. 地球物理学报, 63(1): 320-328, doi:10.6038/cjg2020N0058. http://www.geophy.cn/article/doi/10.6038/cjg2020N0058

     

    王昊, 严加永, 付光明等. 2020. 深度学习在地球物理中的应用现状与前景. 地球物理学进展, 35(2): 642-655, doi:10.6038/pg2020CC0476.

     

    曾昌民, 杜治利, 周学慧等. 2011. 昆仑山前柯东构造带构造解析及形成机制. 新疆石油地质, 32(2): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201102012.htm

     

    张繁昌, 刘汉卿, 钮学民等. 2014. 褶积神经网络高分辨率地震反演. 石油地球物理勘探, 49(6): 1165-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201406025.htm

  • 加载中

(9)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2021-02-24
修回日期:  2021-11-09
上线日期:  2022-02-10

目录