首页 | 本学科首页   官方微博 | 高级检索  
     

基于纹理特征的图像恢复
引用本文:章勇勤, 艾勇, 吴敏渊, 马攀. 基于纹理特征的图像恢复[J]. 武汉大学学报 ( 信息科学版), 2010, 35(1): 102-105.
作者姓名:章勇勤  艾勇  吴敏渊  马攀
作者单位:1武汉大学电子信息学院,武汉市珞喻路129号430079;2武汉大学遥感信息工程学院,武汉珞喻路129号430079
基金项目:国家863计划资助项目(2006AA040307)
摘    要:在机器视觉和图像处理领域中,图像去噪是一个极其重要的问题,但在消除噪声的同时也丢失了图像中的纹理边缘信息。针对这一缺点,分析了图像去噪的难点,以UINTA(unsupervised,information-theoretic,adaptive filtering)方法为基础,对其作了改进,以信号能量为准则,分别从时域和频域的角度提出了一种纹理特征检测算子,利用该算子对滤除的残余图像重新识别,提取出被误判的纹理细节信息,然后把它补偿到滤波后的图像中,获得最终的去噪图像。实验结果表明,该方法在保留图像纹理特征的同时,有效地去除了图像中的噪声信息,提高了图像的信噪比,降低了均方误差,显著改善了图像的视觉效果,具有很强的实用性。

关 键 词:图像恢复  马尔科夫随机场  纹理  信噪比  均方根误差
收稿时间:2009-10-29
修稿时间:2009-10-29

Images Restoration Based on the Textural Features
ZHANG Yongqin, AI Yong, WU Minyuan, MA Pan. Images Restoration Based on the Textural Features[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 102-105.
Authors:ZHANG Yongqin AI Yong WU Minyuan MA Pan
Affiliation:1School of Electronic Information,Wuhan University,129 Luoyu Road,Wuhan 430079,China;2School of Remote Sensing and Information Engineering,Wuhan University,129 Luoyu Road,Wuhan 430079,China
Abstract:Image denoising is an important and widely studied problem in machine vision and image processing.However,a large number of image denoising methods eliminate noise and discard textures and edges,at the same time.To overcome the shortcomings,the paper makes its improvement on a basis of unsupervised,information-theoretic,adaptive image filter under analysis of difficulties on image denoising.According to the principles of signal energy,a detection operator of textural features is proposed to check the filter...
Keywords:image restoration  Markov random fields  texture  signal to noise ratio  RMSE  
本文献已被 CNKI 等数据库收录!
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号