[1] |
贡艺, 陈玲, 李云凯, 2017. 海洋生态系统稳定同位素基线的选取[J]. 应用生态学报, 28(7): 2399-2404.
|
|
GONG YI, CHEN LING, LI YUNKAI, 2017. Selection of isotopic baselines in marine ecosystems[J]. Chinese Journal of Applied Ecology, 28(7): 2399-2404. (in Chinese with English abstract)
|
[2] |
黄佳兴, 龚玉艳, 徐姗楠, 等, 2019. 南海中西部渔场主要渔业生物碳氮稳定同位素特征[J]. 热带海洋学报, 38(1): 76-84.
|
|
HUANG JIAXING, GONG YUYAN, XU SHANNAN, et al, 2019. Characteristics of stable carbon and nitrogen isotopes of major fishery organisms in the fishing ground of central western South China Sea[J]. Journal of Tropical Oceanography, 38(1): 76-84. (in Chinese with English abstract)
|
[3] |
黄小平, 黄良民, 宋金明, 等, 2019. 营养物质对海湾生态环境影响的过程与机理[M]. 北京: 科学出版社: 549-558. (in Chinese)
|
[4] |
纪炜炜, 李圣法, 陈雪忠, 等, 2015. 基于稳定同位素方法的东海北部及其邻近水域主要游泳动物营养结构变化[J]. 海洋渔业, 37(6): 494-500.
|
|
JI WEIWEI, LI SHENGFA, CHEN XUEZHONG, et al, 2015. Variation in trophic structure of nekton organisms from the northern East China Sea and adjacent waters based on stable isotope values[J]. Marine Fisheries, 37(6): 494-500. (in Chinese with English abstract)
|
[5] |
牟新悦, 陈敏, 张琨, 等, 2017. 夏季大亚湾悬浮颗粒有机物碳、氮同位素组成及其物源指示[J]. 海洋学报, 39(2): 39-52.
|
|
MOU XINYUE, CHEN MIN, ZHANG KUN, et al, 2017. Stable carbon and nitrogen isotopes as tracers of sources of suspended particulate organic matter in the Daya Bay in summer[J]. Haiyang Xuebao, 39(2): 39-52. (in Chinese with English abstract)
|
[6] |
宁加佳, 杜飞雁, 王雪辉, 等, 2016. 南沙群岛西南部陆架区底层鱼类营养结构研究[J]. 海洋与湖沼, 47(2): 468-475.
|
|
NING JIAJIA, DU FEIYAN, WANG XUEHUI, et al, 2016. The trophic structure of demersal fish species in Southwestern continental shelf of Nansha Islands, South China Sea[J]. Oceanologia et Limnologia Sinica, 47(2): 468-475. (in Chinese with English abstract)
|
[7] |
王友绍, 王肇鼎, 黄良民, 2004. 近20年来大亚湾生态环境的变化及其发展趋势[J]. 热带海洋学报, 23(5): 85-95.
|
|
WANG YOUSHAO, WANG ZHAODING, HUANG LIANGMIN, 2004. Environment changes and trends in Daya Bay in recent 20 years[J]. Journal of Tropical Oceanography, 23(5): 85-95. (in Chinese with English abstract)
|
[8] |
王玉堃, 2015. 耳石微细结构和微化学示踪技术在鱼类种群生态学研究中的应用[D]. 青岛: 中国海洋大学.
|
|
WANG YUKUN, 2015. Preliminary studies on the population ecology based on fish otolith microstructure and microchemistry[D]. Qingdao: Ocean University of China. (in Chinese with English abstract)
|
[9] |
谢斌, 李云凯, 张虎, 等, 2017. 基于稳定同位素技术的海州湾海洋牧场食物网基础及营养结构的季节性变化[J]. 应用生态学报, 28(7): 2292-2298.
|
|
XIE BIN, LI YUNKAI, ZHANG HU, et al, 2017. Food web foundation and seasonal variation of trophic structure based on the stable isotopic technique in the marine ranching of Haizhou Bay, China[J]. Chinese Journal of Applied Ecology, 28(7): 2292-2298. (in Chinese with English abstract)
|
[10] |
徐军, 张敏, 谢平, 2010. 氮稳定同位素基准的可变性及对营养级评价的影响[J]. 湖泊科学, 22(1): 8-20.
doi: 10.18307/2010.0102
|
|
XU JUN, ZHANG MIN, XIE PING, 2010. Variability of stable nitrogen isotopic baselines and its consequence for trophic modeling[J]. Journal of Lake Sciences, 22(1): 8-20. (in Chinese with English abstract)
doi: 10.18307/2010.0102
|
[11] |
徐姗楠, 郭建忠, 范江涛, 等, 2020. 夏季大亚湾鱼类群落结构与多样性[J]. 生态学杂志, 39(4): 1254-1264.
|
|
XU SHANNAN, GUO JIANZHONG, FAN JIANGTAO, et al, 2020. Fish community structure and diversity in Daya Bay in summer[J]. Chinese Journal of Ecology, 39(4): 1254-1264. (in Chinese with English abstract)
|
[12] |
杨文超, 黄道建, 陈继鑫, 等, 2020. 大亚湾近十年沉积物中汞、砷分布及污染评价[J]. 水产科学, 39(6): 915-921.
|
|
YANG WENCHAO, HUANG DAOJIAN, CHEN JIXIN, et al, 2020. Distribution and pollution assessment of Hg and As contents in surface sediments of Daya Bay in the past ten years[J]. Fisheries Science, 39(6): 915-921. (in Chinese with English abstract)
|
[13] |
曾艳艺, 赖子尼, 杨婉玲, 等, 2018. 珠江河口渔业生物稳定同位素营养级分析[J]. 生态学杂志, 37(1): 194-202.
|
|
ZENG YANYI, LAI ZINI, YANG WANLING, et al, 2018. Trophic spectrum of fishery species from the Pearl River Estuary by stable isotope analysis[J]. Chinese Journal of Ecology, 37(1): 194-202. (in Chinese with English abstract)
|
[14] |
张硕, 高世科, 于雯雯, 等, 2019. 碳、氮稳定同位素在构建海洋食物网及生态系统群落结构中的研究进展[J]. 水产养殖, 40(7): 6-10.
|
|
ZHANG SHUO, GAO SHIKE, YU WENWEN, et al, 2019. Research progress of stable carbon and nitrogen isotopes in the construction of marine food web and ecosystem community structure[J]. Journal of Aquaculture, 40(7): 6-10. (in Chinese with English abstract)
|
[15] |
张文博, 黄洪辉, 李纯厚, 等, 2019. 华南典型海湾主要渔业生物碳氮稳定同位素研究[J]. 南方水产科学, 15(5): 9-14.
|
|
ZHANG WENBO, HUANG HONGHUI, LI CHUNHOU, et al, 2019. Study on carbon and nitrogen stable isotopes of main fishery species in typical gulf, southern China[J]. South China Fisheries Science, 15(5): 9-14. (in Chinese with English abstract)
|
[16] |
BODE A, CARRERA P, GONZÁLEZ-NUEVO G, et al, 2018. A trophic index for sardine (Sardina pilchardus) and its relationship to population abundance in the southern Bay of Biscay and adjacent waters of the NE Atlantic[J]. Progress in Oceanography, 166: 139-147.
doi: 10.1016/j.pocean.2017.08.005
|
[17] |
DE SMET B, FOURNIER J, DE TROCH M, et al, 2015. Integrating ecosystem engineering and food web ecology: testing the effect of biogenic reefs on the food Web of a soft-bottom intertidal area[J]. PLoS One, 10(10): e0140857.
doi: 10.1371/journal.pone.0140857
|
[18] |
HOBSON K A, FISK A, KARNOVSKY N, et al, 2002. A stable isotope (δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 49(22-23): 5131-5150.
doi: 10.1016/S0967-0645(02)00182-0
|
[19] |
HUSSEY N E, MACNEIL M A, MCMEANS B C, et al, 2014. Rescaling the trophic structure of marine food webs[J]. Ecology Letters, 17(2): 239-250.
doi: 10.1111/ele.12226
|
[20] |
JACKSON M C, DONOHUE I, JACKSON A L, et al, 2012. Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology[J]. PLoS One, 7(2): e31757.
doi: 10.1371/journal.pone.0031757
|
[21] |
LAYMAN C A, ARRINGTON D A, MONTAÑA C G, et al, 2007. Can stable isotope ratios provide for community-wide measures of trophic structure[J]. Ecology, 88(1): 42-48.
doi: 10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2
|
[22] |
MATTHEWS B, MAZUMDER A, 2005. Consequences of large temporal variability of zooplankton δ15N for modeling fish trophic position and variation[J]. Limnology and Oceanography, 50(5): 1404-1414.
doi: 10.4319/lo.2005.50.5.1404
|
[23] |
MCMEANS B C, ROONEY N, ARTS M T, et al, 2013. Food web structure of a coastal Arctic marine ecosystem and implications for stability[J]. Marine Ecology Progress Series, 482: 17-28.
doi: 10.3354/meps10278
|
[24] |
PAULY D, PALOMARES M L, FROESE R, et al, 2001. Fishing down Canadian aquatic food webs[J]. Canadian Journal of Fisheries and Aquatic Sciences, 58(1): 51-62.
doi: 10.1139/f00-193
|
[25] |
POST D M, 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions[J]. Ecology, 83(3): 703-718.
doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
|
[26] |
SABEEL R A O, INGELS J, PAPE E, et al, 2015. Macrofauna along the Sudanese Red Sea coast: potential effect of mangrove clearance on community and trophic structure[J]. Marine Ecology, 36(3): 794-809.
doi: 10.1111/maec.12184
|
[27] |
SÁNCHEZ-HERNÁNDEZ J, AMUNDSEN P A, 2018. Ecosystem type shapes trophic position and omnivory in fishes[J]. Fish and Fisheries, 19(6): 1003-1015.
doi: 10.1111/faf.12308
|
[28] |
YING RUI, CAO YITING, YIN FANGMIN, et al, 2020. Trophic structure and functional diversity reveal pelagic-benthic coupling dynamic in the coastal ecosystem of Daya Bay, China[J]. Ecological Indicators, 113: 106241.
doi: 10.1016/j.ecolind.2020.106241
|
[29] |
ZANDEN M J V, CHANDRA S, ALLEN B C, et al, 2003. Historical food web structure and restoration of native aquatic communities in the Lake Tahoe (California-Nevada) Basin[J]. Ecosystems, 6(3): 274-288.
doi: 10.1007/s10021-002-0204-7
|
[30] |
ZANDEN M J V, FETZER W W, 2007. Global patterns of aquatic food chain length[J]. Oikos, 116(8): 1378-1388.
doi: 10.1111/j.0030-1299.2007.16036.x
|
[31] |
ZHOU LINBIN, HUANG LIANGMIN, TAN YEHUI, et al, 2015. Size-based analysis of a zooplankton community under the influence of the Pearl River plume and coastal upwelling in the northeastern South China Sea[J]. Marine Biology Research, 11(2): 168-179.
doi: 10.1080/17451000.2014.904882
|