黄河源区阿尼玛卿山典型冰川表面高程近期变化

蒋宗立, 刘时银, 郭万钦, 李晶, 龙四春, 王欣, 魏俊锋, 张震, 吴坤鹏

冰川冻土 ›› 2018, Vol. 40 ›› Issue (2) : 231-237.

PDF(5724 KB)
PDF(5724 KB)
冰川冻土 ›› 2018, Vol. 40 ›› Issue (2) : 231-237. DOI: 10.7522/j.issn.1000-0240.2018.0027  CSTR: 32264.14.j.issn.1000-0240.2018.0027
冰冻圈与全球变化

黄河源区阿尼玛卿山典型冰川表面高程近期变化

  • 蒋宗立1,2, 刘时银2,3, 郭万钦3, 李晶3, 龙四春1, 王欣1, 魏俊锋1, 张震2, 吴坤鹏2
作者信息 +

Recent surface elevation changes of three representative glaciers in Ányêmaqên Mountains, source region of Yellow River

  • JIANG Zongli1,2, LIU Shiyin2,3, GUO Wanqin3, LI Jing3, LONG Sichun1, WANG Xin1, WEI Junfeng1, ZHANG Zhen2, WU Kunpeng2
Author information +
文章历史 +

摘要

阿尼玛卿山位于青藏高原的东缘,是黄河源区冰川分布比较集中的区域。该区域的冰川物质平衡变化研究对于冰川水资源评估及冰川对气候变化响应研究具有重要借鉴意义。通过TerraSAR-X/TanDEM-X数据的干涉测量方法获得阿尼玛卿山区冰川的高分辨、高精度的数字高程模型(DEM),与SRTM DEM进行差分获得该区域冰川2000年至2013年间的表面高程变化。对比发现:近13 a来该区域典型大冰川表面高程整体均有所下降,唯格勒当雄冰川末端区域冰川表面高程平均下降(4.16±3.70)m,冰舌中部表面高程有所增加,冰川末端区域表碛覆盖范围有所增加;哈龙冰川表面高程从末端往上呈递减下降的趋势,平均下降(8.73±3.70)m;耶和龙冰川表面平均下降了(13.0±3.70)m,但从冰川末端往上1.6 km区段表面高程平均增加约25 m,冰舌中部表面高程下降明显,对比冰川编目数据、Landsat TM图像可知,该冰川在2000年至2009年间发生过跃动,冰川末端位置前进了约500 m。总体来说,即使存在个别冰川前进现象,该区域冰川在近13 a间仍处于退缩状态。

Abstract

Ányêmaqên Mountains is located in the eastern part of the Tibetan Plateau, where there are many glaciers. The glacier change has an important significant in glacier response to climate change and for glacier meltwater resource accessment. In this article, interferometry of TerraSAR-X/TanDEM-X with bistatic mode was employed to retrieve high resolution and high precision Digital Elevation Models (DEM). Elevation changes of three representative glaciers between 2000 to 2013 were calculated by differential methods with SRTM DEM covered. It was found that surface elevation of the three glaciers has decreased as a whole in recent 13 years. In the Weigele Dangxiong Glacier, the surface elevation has decreased (4.16±3.70) m in average, mostly near the terminus; the debris covered area has expanded; the surface elevation has increased in the middle part of the glacier tongue. In the Halong Glacier, surface elevation has decreased (8.73±3.70) m in average from terminus to accumulation zone. In the Yehelong Glacier, surface elevation has decreased (13.0±3.70) m in average. However, from terminus up to 1.6 km, the surface elevation has increased 25.0 m in average, then has decreased clearly in average up to 1.6 km along the main flow line. Comparison between glacier outline of Chinese Glacier Second Inventory and Lansat 7/8 image found that terminus of the Yehelong Glacier had advanced about 500 m, indicating a fast advance or surge between 2000 and 2009. Thus, the conclusion can be drawn that the glaciers in Ányêmaqên Mountains had retreated as a whole from 2000 through 2013 with some advances.

关键词

阿尼玛卿山 / SRTM DEM / TanDEM-X / 干涉测量 / 冰面高程变化

Key words

Ányêmaqên Mountains / SRTM DEM / TanDEM-X / interferometry / glacier surface elevation change

引用本文

导出引用
蒋宗立, 刘时银, 郭万钦, 李晶, 龙四春, 王欣, 魏俊锋, 张震, 吴坤鹏. 黄河源区阿尼玛卿山典型冰川表面高程近期变化[J]. 冰川冻土, 2018, 40(2): 231-237 https://doi.org/10.7522/j.issn.1000-0240.2018.0027
JIANG Zongli, LIU Shiyin, GUO Wanqin, LI Jing, LONG Sichun, WANG Xin, WEI Junfeng, ZHANG Zhen, WU Kunpeng. Recent surface elevation changes of three representative glaciers in Ányêmaqên Mountains, source region of Yellow River[J]. Journal of Glaciology and Geocryology, 2018, 40(2): 231-237 https://doi.org/10.7522/j.issn.1000-0240.2018.0027
中图分类号: P343.6   

参考文献

[1] Harrison W D. How do glaciers respond to climate? Perspectives from the simplest models[J]. Journal of Glaciology, 2013, 59(217):949-960.
[2] Riedel J L, Wilson S, Baccus W, et al. Glacier status and contribution to streamflow in the Olympic Mountains, Washington, USA[J]. Journal of Glaciology, 2015, 61(225):8-16.
[3] Ding Yongjian, Mu Mu, Zhang Jianyun, et al. Impacts of climate change on the environment, economy, and society of China[M]//Climate and environmental change in China:1951-2012. Berlin, Heidelberg:Springer, 2016:69-92.
[4] Ren Binghui. Existing glacier fluctuation and its relation to the climatical changes in China[J]. Journal of Glaciology and Geocryology, 1988, 10(3):244-249.[任炳辉. 我国现代冰川变化及其与气候变化的关系[J]. 冰川冻土, 1998, 10(3):244-249.]
[5] Li Zhongqin, Li Kaiming, Wang Lin. Study on recent glacier changes and their impact on water resources in Xinjiang, northwestern China[J]. Quaternary Sciences, 2010, 30(1):96-106.[李忠勤, 李开明, 王林. 新疆冰川近期变化及其对水资源的影响研究[J]. 第四纪研究, 2010, 30(1):96-106.]
[6] Pu Hongzheng, Han Tianding, Li Xiangying, et al. Characteristics of the altitude-dependent mass balance and their impact on runoff of the Glacier No.1 at the headwaters of the Vrümqi River, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2014, 36(5):1251-1259.[蒲红铮, 韩添丁, 李向应, 等. 天山乌鲁木齐河源1号冰川物质平衡高度变化特征及其对径流的影响[J]. 冰川冻土, 2014, 36(5):1251-1259.]
[7] Yang Yuan, Yang Jianping, Li Man, et al. Public perception and selections of adaptation measures against glacier change and its impacts:taking the Hexi inland river basin as an example[J]. Journal of Glaciology and Geocryology, 2015, 37(1):70-79.[杨圆, 杨建平, 李曼, 等. 冰川变化及其影响的公众感知与适应措施分析:以甘肃河西内陆河流域为例[J]. 冰川冻土, 2015, 37(1):70-79.]
[8] Fan Xiaobing, Yan Lili, Xu Jinghua, et al. Analysis of glacier change in Manas River basin in the last 50 years based on multi-source data[J]. Journal of Glaciology and Geocryology, 2015, 37(5):1188-1198.[樊晓兵, 彦立利, 徐京华, 等. 基于多源数据的近50 a玛纳斯河流域冰川变化分析[J]. 冰川冻土, 2015, 37(5):1188-1198.]
[9] Wei Junfeng, Liu Shiyin, Guo Wanqin, et al. Changes in glacier volume in the north bank of the Bangong Co Basin from 1968 to 2007 based on historical topographic maps, SRTM, and ASTER stereo images[J]. Arctic, Antarctic, and Alpine Research, 2015, 47(2):301-311.
[10] Pieczonka T, Bolch T, Wei Junfeng, et al. Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery[J]. Remote Sensing of Environment, 2013, 130:233-244.
[11] Wang Puyu, Li Zhongqin, Wang Wenbin, et al. Changes of six selected glaciers in the Tomor region, Tian Shan, Central Asia, over the past 50 years, using high-resolution remote sensing images and field surveying[J]. Quaternary International, 2013, 311:123-131.
[12] Kwok R, Fahnestock M A. Ice sheet motion and topography from radar interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(1):189-200.
[13] Wan Lei, Zhou Chunxia, E Dongchen, et al. Dem generation and precision analysis of antarctic ice sheet based on InSAR and ICESat data[J]. Journal of Glaciology and Geocryology, 2015, 37(5):1160-1167.[万雷, 周春霞, 鄂栋臣, 等. 基于InSAR和ICESat的南极冰盖地区DEM提取和精度分析[J]. 冰川冻土, 2015, 37(5):1160-1167.]
[14] Rizzoli P, Bräutigam B, Kraus T, et al. Relative height error analysis of TanDEM-X elevation data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73:30-38.
[15] Gruber A, Wessel B, Huber M, et al. Operational TanDEM-X DEM calibration and first validation results[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73:39-49.
[16] Eldhuset K, Weydahl D J. Using stereo SAR and InSAR by combining the COSMO-SkyMed and the TanDEM-X mission satellites for estimation of absolute height[J]. International Journal of Remote Sensing, 2013, 34(23):8463-8474.
[17] Rankl M, Braun M. Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models[J]. Annals of Glaciology, 2016, 57(71):273-281.
[18] Neckel N, Braun A, Kropácek J, et al. Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry[J]. The Cryosphere, 2013, 7(5):1623.
[19] Yang Jianping, Ding Yongjian, Liu Shiyin, et al. Glacier change and its effect on surface runoff in the source regions of Yangtze and Yellow rivers[J]. Journal of Natural Resources, 2003, 18(5):595-602.[杨建平, 丁永建, 刘时银, 等. 长江黄河源区冰川变化及其对河川径流的影响[J]. 自然资源学报, 2003, 18(5):595-602.]
[20] Wang Jingtai. Climatic geomorphology of the Anyêmaqên Mountains[J]. Journal of Glaciology and Geocryology, 1988, 10(2):161-171.[王靖泰. 阿尼玛卿山气候地貌[J]. 冰川冻土, 1988, 10(2):161-171.]
[21] Gardelle J, Berthier E, Arnaud Y. Slight mass gain of Karakoram glaciers in the early twenty-first century[J]. Nature Geoscience, 2012, 5(5):322.
[22] Pipaud I, Loibl D, Lehmkuhl F. Evaluation of TanDEM-X elevation data for geomorphological mapping and interpretation in high mountain environments:a case study from SE Tibet, China[J]. Geomorphology, 2015, 246:232-254.
[23] Avtar R, Yunus A P, Kraines S, et al. Evaluation of DEM generation based on interferometric SAR using TanDEM-X data in Tokyo[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2015, 83:166-177.
[24] Guo Wanqin, Liu Shiyin, Xu Junli, et al. The second Chinese glacier inventory:data, methods and results[J]. Journal of Glaciology, 2015, 61(226):357-372.
[25] Liu Shiyin, Lu Anxin, Ding Yongjian, et al. Glacier fluctuations and the inferred climate changes in the Ányêmaqên Mountains in the source area of the Yellow River[J]. Journal of Glaciology and Geocryology, 2002, 24(6):701-707.[刘时银, 鲁安新, 丁永建, 等. 黄河上游阿尼玛卿山区冰川波动与气候变化[J]. 冰川冻土, 2002, 24(6):701-707.]

基金

科技部专项项目(2013FY111400);国家自然科学基金项目(41471067;41201068;41474014;41271091)资助
PDF(5724 KB)

1541

Accesses

0

Citation

Detail

段落导航
相关文章

/