
1964-2010年青藏高原长江源各拉丹冬地区冰川变化及其不确定性分析
Variation and Uncertainty Analysis of the Glaciers in the Past 50 Years in Geladandong of Tibetan Plateau
利用1964年美国CORONA间谍卫星影像和1976-2010年的Landsat MSS/TM/ETM+遥感影像, 对青藏高原长江源各拉丹冬地区的冰川进行监测, 获得每10 a间隔的冰川面积数据, 并对冰川制图中的不确定性进行了评估.由于冰川表面比较洁净, 认为该地区冰川变化的不确定性主要由分辨率(Landsat)和人为操作差异造成, 误差可达1%~2%.通过对比发现: 1964-2010年间, 各拉丹冬地区冰川面积总体上减少了45.75 km2, 相对变化为6.80%, 冰川年平均变化速度约为0.99 km2·a-1, 相对变化速度为0.15%·a-1; 该地区冰川总体退缩较为缓慢, 但部分冰川变化显著, 在138条冰川中, 有14条大冰川存在较为明显的变化.在过去的近50 a中, 该地区的冰川并不是都呈退缩状态, 先后有9条冰川出现过前进的现象, 其中有1条冰川一直处于前进状态, 长江源头冰川(姜古迪如北支冰川)先后出现过两次前进, 分别发生在1964-1977年间和2000-2010年间.
The dataset of glacierized area in Geladandong, with 10 years interval, was established on the CORONA satellite images in 1964 and the Landsat MSS/TM/ETM images from 1976 to 2010. As the glacierized surface is relatively clean, the uncertain of glacierized area, about 1%~2% of the total area, mainly caused by the satellite image resolution (Landsat) and different operators. The contrast of glacierized area in different periods shows that the total glacierized area in Geladandong decreased by 45.75 km2 from 1964 to 2010 and the relative change amount was 6.80%; the annual average change rate was 0.99 km2·a-1 and the relative change rate was 0.15%·a-1. Generally the glacier in Geladandong retreated slowly. Among 138 glaciers there are 14 ones having significant changed in the past 50 years and not all the glaciers having retreated. Nine glaciers had advanced at different periods and one of them advances all the time. There is a glacier at the source of the Yangtze River (north branch of Jianggudiru Glacier) having advanced twice during the periods of 1964-1977 and 2000-2010.
冰川 / 冰川变化 / 气候变化 / 青藏高原 / 各拉丹东 {{custom_keyword}} /
glacier / glacier variation / climate change / Tibetan Plateau / Geladandong {{custom_keyword}} /
[1] Haeberli W, Hoelzle M, Suter S. Into the Second Century of Worldwide Glacier Monitoring-Prospects and Strategies: A Contribution to the International Hydrological Programme (IHP) and the Global Environment Monitoring System (GEMS)[M]. Paris: UNESCO, 1998: 3.
[2] IPCC. Climate Change 2007: The Physical Science Basis [M]. Cambridge, UK: Cambridge University Press, 2007: 1-996.
[3] Ding Yongjian, Qin Dahe. Cryosphere change and global warming: impact and challenges in China [J]. China Basic Science, 2009, 11(3): 4-10. [丁永建, 秦大河. 冰冻圈变化与全球变暖: 我国面临的影响与挑战[J]. 中国基础科学, 2009, 11(3): 4-10.]
[4] Zhang Jiutian, He Xiaojia, Shangguan Donghui,et al. Impact of intensive glacier ablation on arid regions of northwest China and its countermeasure[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 848-854. [张九天, 何霄嘉, 上官冬辉, 等. 冰川加剧消融对我国西北干旱区的影响及其适应对策[J].冰川冻土, 2012,34(4): 848-854.]
[5] Tian Hongzhen, Yang Taibao, Liu Qinping. Relation between climate change and Dunde Glacier retreat studied by using remote sensing data, 1970-2010[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 277-283. [田洪阵, 杨太保, 刘沁萍. 基于遥感技术的近40 a来敦德冰川变化和气候变化的关系研究[J]. 冰川冻土, 2012,34(2): 277-283.]
[6] Jiang Shan, Yang Taibao, Tian Hongzhen. Glacier shrinkage and its dependence on climate in the Malan Mountain in past 40 years based on RS and GIS [J]. Journal of Glaciology and Geocryology, 2012,34(3): 522-529. [姜珊, 杨太保, 田洪阵. 1973-2010年基于RS和GIS的马兰冰川退缩与气候变化关系研究[J]. 冰川冻土, 2012,34(3): 522-529.]
[7] Zhang Shuping, Zhang Hucai, Chen Guangjie,et al. Climate and glacier changes and lake response in the Ngangla Ringsto Catchment in western Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012,34(2): 267-276. [张淑萍, 张虎才, 陈光杰, 等. 1973-2010年青藏高原西部昂拉仁错流域气候、 冰川变化与湖泊响应[J]. 冰川冻土, 2012,34(2): 267-276.]
[8] Lu Anxin, Yao Tandong, Liu Shiyin, et al. Glacier change in the Geladandong Area of the Tibetan Plateau monitored by remote sensing[J]. Journal of Glaciology and Geocryology, 2002, 24(5): 559-562. [鲁安新, 姚檀栋, 刘时银, 等. 青藏高原各拉丹冬地区冰川变化的遥感监测[J]. 冰川冻土, 2002, 24(5): 559-562.]
[9] Schenk T, Csathó B, Shin S W. Rigorous panoramic camera model for DISP Imagery[C]//Joint ISPRS/EARSeL Workshop on High Resolution Mapping from Space 2003, Hannover, Germany, Oct. 6-8, 2003. http://www.ipi.uni-hannover.de/fileadmin/institut/pdf/schenk.pdf.
[10] Shin S W. Rigorous Model of Panoramic Cameras[D]. PhD Thesis, Columbus, OH: Ohio State University, 2003.
[11] Sohn HG, Kim GH, Yom JH. Mathematical modelling of historical reconnaissance CORONA KH-4B Imagery[J]. The Photogrammetric Record, 2004, 19(105): 51-66.
[12] Altmaier A, Kany C. Digital surface model generation from CORONA satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2002, 56(4): 221-235.
[13] Racoviteanu A E, Arnaud Y, Williams M W,et al. Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing [J]. Journal of Glaciology, 2008,54(186): 499-510.
[14] Ye Qinghua, Yao Tandong, Zheng Hongxing, et al. Glacier and lake co-variations and their responses to climate change in the Mapam Yumco Basin on Tibet [J]. Geographical Research, 2008,27(5): 1178-1190, 1228. [叶庆华, 姚檀栋, 郑红星, 等. 西藏玛旁雍错流域冰川与湖泊变化及其对气候变化的响应[J]. 地理研究, 2008, 27(5): 1178-1190, 1228.]
[15] Liu Shiyin, Ding Yongjian, Li Jing, et al. Glaciers in response to recent climate warming in western China[J]. Quaternary Sciences, 2006,26(5): 762-771. [刘时银, 丁永建, 李晶, 等. 中国西部冰川对近期气候变暖的响应[J]. 第四纪研究, 2006, 26(5): 762-771.]
中国科学院战略性先导科技专项(XDA05090302)资助
/
〈 |
|
〉 |